top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Des mathématiciens et des guerres : Histoires de confrontations (XIXe-XXe siècle) / / Antonin Durand, Laurent Mazliak, Rossana Tazzioli
Des mathématiciens et des guerres : Histoires de confrontations (XIXe-XXe siècle) / / Antonin Durand, Laurent Mazliak, Rossana Tazzioli
Autore Anizan Anne-Laure
Pubbl/distr/stampa Paris, : CNRS Éditions, 2019
Descrizione fisica 1 online resource (126 p.)
Altri autori (Persone) DurandAntonin
JournoudPierre
MaletAntoni
PaumierAnne-Sandrine
PrevostJean-Guy
TazzioliRossana
ThomasWilliam
MazliakLaurent
Soggetto topico War and mathematics
Mathematicians - Attitudes
Mathematicians - Political activity
Mathematics - History - 19th century
Mathematics - History - 20th century
Soggetto non controllato mathématiques
communication
guerre
histoire militaire
ISBN 2-271-12995-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione fre
Record Nr. UNINA-9910353340003321
Anizan Anne-Laure  
Paris, : CNRS Éditions, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Images of Italian Mathematics in France : The Latin Sisters, from Risorgimento to Fascism / / edited by Frédéric Brechenmacher, Guillaume Jouve, Laurent Mazliak, Rossana Tazzioli
Images of Italian Mathematics in France : The Latin Sisters, from Risorgimento to Fascism / / edited by Frédéric Brechenmacher, Guillaume Jouve, Laurent Mazliak, Rossana Tazzioli
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2016
Descrizione fisica 1 online resource (315 p.)
Disciplina 510
Collana Trends in the History of Science
Soggetto topico Mathematics
History
History of Mathematical Sciences
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto A. Durand: Daladier’s stay in Italy in 1910: a mirror of the French look at Italy -- Introduction -- P. Crépel: Italian Mathematicians as seen by French biographical dictionaries in the 19th century -- F. Brechenmacher: The 27 Italies of Camille Jordan -- A. Brigaglia: Picard and the Italian Mathematicians: the History of three Prix Bordin -- A. Guerraggio, F. Jaeck, L. Mazliak: Lines on the Horizon -- E. Luciano: The French ‘Analysts’ and Peano’s Mathematical Logic -- P. Cantù: Louis Rougier’s reception of the Peano School -- R. Tazzioli: The eyes of French mathematicians on Tullio Levi-Civita – the case of hydrodynamics (1900-1930) -- A. Capristo: French mathematicians at the Bologna Congress (1928).
Record Nr. UNINA-9910136622903321
Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical communities in the reconstruction after the Great War 1918-1928 : trajectories and institutions / / Laurent Mazliak, Rossana Tazzioli, editors
Mathematical communities in the reconstruction after the Great War 1918-1928 : trajectories and institutions / / Laurent Mazliak, Rossana Tazzioli, editors
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (xvi, 363 pages) : illustrations
Disciplina 510.94
Collana Trends in the history of science
Soggetto topico Reconstruction (1914-1939) - Europe
Mathematics - Europe - History
Reconstrucció, 1914-1939
Història de la matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-61683-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Introduction -- The Roaring Mathematical Twenties 1918-1928 -- References -- Contents -- William Henry Young, an Unconventional President of the International Mathematical Union -- 1 Introduction -- 2 The Troubled Existence of the International Mathematical Union -- 2.1 The Difficult Situation in Which Science Found Itself in the Aftermath of the Great War -- 2.2 Early Resistance to the Exclusion Policy -- 2.3 The International Mathematical Union: A Subordinate Institution -- 2.4 Further International Congresses in the 1920s -- 3 William Henry Young -- 3.1 William Henry Young: The Person -- 3.2 William Henry Young: The Mathematician -- 4 Young's Presidency of the International Mathematical Union -- 5 Conclusions -- References -- The Unione Matematica Italiana and Its Bollettino, 1922-1928. National and International Aspects -- 1 Introduction -- 2 The Foundation of the UMI in the International Context -- 3 What Were the UMI and BUMI Modeled After? -- 4 The UMI on the International Scene: The 1924 ICM in Toronto -- 5 The International Congress of Mathematicians, Bologna 1928 -- 6 UMI's Change in Attitude Towards Fascism -- 7 Conclusions -- Archival Sources -- References -- L'Enseignement Mathématique and Its Internationalist Ambitions During the Turmoil of WWI and the 1920s -- 1 Introduction -- 2 International Configuration of the Pre-war Mathematical World as Depicted in L'Enseignement Mathématique -- 2.1 Laisant and Fehr: Building an Internationale of Mathematical Educators -- 2.2 The CIEM as Presented in the EM's Chronique Section-A Geographical Representation of the Educational Mathematical World? -- 3 Internationalist Editorial Practices in EM During and in the Immediate Aftermath of the War -- 3.1 EM Covers: Not in Step with the Times? -- 3.2 Maintaining the Journal's Ambition and Bibliographical Bulletin During the War.
3.3 Maintaining a Chronique Dedicated to the CIEM, or How Directing the (Possibly Virtual) Activity of an International Scientific Organization -- 4 EM's Path in the World of the 1920s -- 4.1 Internationalism in the Mathematical Editorial World of the 1920s, Practical Difficulties and the New Geopolitical Situation -- 4.2 EM and the CIEM: The New Position of International Institutions -- 5 Conclusion -- Archival Sources -- Mathematics and Logic in Polish Encyclopedias Published During the Interwar Period -- 1 Introduction -- 2 Historical Background -- 3 Encyclopedias Published in Interwar Poland -- 4 Mathematics and Logic in Ilustrowana Encyklopedia Trzaski, Everta i Michalskiego -- 5 Mathematics and Logic in the Encyklopedia Powszechna Ultima Thule -- 6 Mathematics and Logic in Wielka Ilustrowana Encyklopedja Powszechna "Gutenberga" -- 7 Mathematics and Logic in Świat i Życie: Zarys Encyklopedyczny Współczesnej Wiedzy i Kultury -- 8 Mathematics and Logic in Poradnik Dla Samouków -- 9 Conclusion -- References -- From the War Against Errors to Mathematics After the War: Public Discourses on a New Mathematical Dictionary -- 1 Introduction -- 2 Mathematical Dictionaries Before the War -- 2.1 Miller and the Context of the MAA -- 2.2 American Dictionaries and European Innovations -- 2.3 A ``Protest Against Such A Butchery of Their Subject'' -- 2.4 Miller on the Needs of Fledgling American Mathematicians -- 3 During the War: Solidifying Content and Intent -- 3.1 Mathematics as the Tower of Babel -- 3.2 Making Higher Mathematics Accessible -- 3.3 Showcasing Scholarship and Testing Leadership -- 4 Aftermath -- 5 Conclusion -- References -- International Geodesy in the Post-war Period, as Seen by the French Bureau des Longitudes (1917-1922) -- 1 Introduction -- 2 International Geodesy Confederations, a Short History.
3 Echo of International Geodetic Works Inside the Bureau des Longitudes -- 4 The French Geodetic Commission -- 5 Proposals of a New Post-war Geodetic Grouping (1918-1919) -- 6 Toward the Constitution of an International Union in Geodesy (1920-1921) -- 7 The Congress of Rome (1922) -- 8 Conclusion -- Archival Sources -- "The First Mathematically Serious German School of Applied Mathematics"? -- 1 Introduction, in Particular Ostrowski's View of the Von Mises School -- 2 The Prehistory of the Rise of Applied Mathematics in Berlin -- 3 The First Beginnings of the Institute and Von Mises' Struggle for Its Consolidation During the 1920s -- 4 The Fight Between University- and TH-Mathematicians in Berlin Over the Exam for Applied Mathematics and Controversies Between Hamel and Von Mises -- 5 Conclusions -- Appendix -- References -- The Mathematics of Nonlinear Oscillations in the 1920s: A Decade of Trials and Convergence? Examples of the Work of Nicolai Minorsky -- 1 Introduction -- 2 The Work of Nicolai Minorsky Until 1923 -- 2.1 Who Is Minorsky? -- 2.2 Minorsky and the Stability of Ships -- 2.3 1923: Trial Runs on the USS New Mexico -- 3 Looking for Theories of Nonlinear Oscillations in the 1920s -- 3.1 The Linear Oscillations Paradigm Until 1918 -- 3.2 A Decade of Trials and Analogy? -- 3.3 From Poincaré to Andronov: New Theories from the USSR -- 3.4 A Growing Community? -- 4 Minorsky and the Mathematics of Nonlinear Oscillations -- 5 Conclusion -- References -- From Fundamenta Mathematicae to Studia Mathematica: The Renaissance of Polish mathematics in light of Banach's publications 1919-1940 -- 1 Introduction -- 2 Fundamenta Mathematicae (est. 1920) -- 2.1 Birth of a Mathematical Journal -- 2.2 Banach's Contributions to Fundamenta Mathematicae -- 3 Studia Mathematica (est. 1929) -- 3.1 A Journal Dedicated to Functional Analysis.
3.2 Banach's Contributions to Studia Mathematica -- 4 Conclusion -- 5 Appendix -- References -- Following Béla von Kerékjártó. The Journeys of a Hungarian Mathematician in the Post-war World -- 1 Introduction -- 2 The Beginning of Béla von Kerékjártó's Career in Hungary -- 2.1 Hungary in the Austro-hungarian Empire at the Turn of the Twentieth Century and After the Great War -- 2.2 A Young Mathematician in a Shaken Hungary -- 2.3 The Faculty of Arts and Sciences of Budapest -- 2.4 The University Ferenc József of Szeged -- 3 Béla von Kerékjártó's Time as a Privat Docent at Göttingen: Writing Vorlesungen Über Topologie -- 3.1 Topology Discoveries at the Turn of the Twentieth Century -- 3.2 Vorlesungen über Topologie -- 4 Contacting Fréchet at a Turn of His Career: Kerékjártó's Doorway to ``The Other Side'' -- 4.1 Maurice Fréchet in Strasbourg in the Aftermath of the Great War -- 4.2 Kerékjártó's Strategic Letters -- 4.3 The Letter from 8 December 1923 -- 4.4 How Is the Theory of Abstract Spaces Perceived in the Exchanges -- 5 Conclusion -- 6 Appendix : Béla von Kerékjártó's Letter to Maurice Fréchet, 8 December 1923 -- References -- Under the Protection of Alien Wings. Russian Emigrant Mathematiciancs in Interwar France: A General Picture and Two Case Studies of Ervand Kogbetliantz and Vladimir Kosticyn -- 1 Introduction -- 2 A Mathematical Road to Exile -- 2.1 To leave or to stay? A shaky timeline and rare departures -- 2.2 Professional socializing academic networks and mathematics -- 2.3 A typology of Russian mathematicians in exile in Paris -- 3 Ervand Kogbetliantz: The Randomness of a Walk -- 3.1 Early years -- 3.2 In the midst of the turmoil -- 3.3 The beginning of a French career -- 4 Vladimir Kosticyn: The Sorrow of Departure -- 4.1 A product of the Moscow school -- 4.2 On the Soviet stage -- 4.3 The Road to Calvary -- 5 Conclusion.
French Archival sources -- Index.
Record Nr. UNISA-996466554603316
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Mathematical communities in the reconstruction after the Great War 1918-1928 : trajectories and institutions / / Laurent Mazliak, Rossana Tazzioli, editors
Mathematical communities in the reconstruction after the Great War 1918-1928 : trajectories and institutions / / Laurent Mazliak, Rossana Tazzioli, editors
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (xvi, 363 pages) : illustrations
Disciplina 510.94
Collana Trends in the history of science
Soggetto topico Reconstruction (1914-1939) - Europe
Mathematics - Europe - History
Reconstrucció, 1914-1939
Història de la matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-61683-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Introduction -- The Roaring Mathematical Twenties 1918-1928 -- References -- Contents -- William Henry Young, an Unconventional President of the International Mathematical Union -- 1 Introduction -- 2 The Troubled Existence of the International Mathematical Union -- 2.1 The Difficult Situation in Which Science Found Itself in the Aftermath of the Great War -- 2.2 Early Resistance to the Exclusion Policy -- 2.3 The International Mathematical Union: A Subordinate Institution -- 2.4 Further International Congresses in the 1920s -- 3 William Henry Young -- 3.1 William Henry Young: The Person -- 3.2 William Henry Young: The Mathematician -- 4 Young's Presidency of the International Mathematical Union -- 5 Conclusions -- References -- The Unione Matematica Italiana and Its Bollettino, 1922-1928. National and International Aspects -- 1 Introduction -- 2 The Foundation of the UMI in the International Context -- 3 What Were the UMI and BUMI Modeled After? -- 4 The UMI on the International Scene: The 1924 ICM in Toronto -- 5 The International Congress of Mathematicians, Bologna 1928 -- 6 UMI's Change in Attitude Towards Fascism -- 7 Conclusions -- Archival Sources -- References -- L'Enseignement Mathématique and Its Internationalist Ambitions During the Turmoil of WWI and the 1920s -- 1 Introduction -- 2 International Configuration of the Pre-war Mathematical World as Depicted in L'Enseignement Mathématique -- 2.1 Laisant and Fehr: Building an Internationale of Mathematical Educators -- 2.2 The CIEM as Presented in the EM's Chronique Section-A Geographical Representation of the Educational Mathematical World? -- 3 Internationalist Editorial Practices in EM During and in the Immediate Aftermath of the War -- 3.1 EM Covers: Not in Step with the Times? -- 3.2 Maintaining the Journal's Ambition and Bibliographical Bulletin During the War.
3.3 Maintaining a Chronique Dedicated to the CIEM, or How Directing the (Possibly Virtual) Activity of an International Scientific Organization -- 4 EM's Path in the World of the 1920s -- 4.1 Internationalism in the Mathematical Editorial World of the 1920s, Practical Difficulties and the New Geopolitical Situation -- 4.2 EM and the CIEM: The New Position of International Institutions -- 5 Conclusion -- Archival Sources -- Mathematics and Logic in Polish Encyclopedias Published During the Interwar Period -- 1 Introduction -- 2 Historical Background -- 3 Encyclopedias Published in Interwar Poland -- 4 Mathematics and Logic in Ilustrowana Encyklopedia Trzaski, Everta i Michalskiego -- 5 Mathematics and Logic in the Encyklopedia Powszechna Ultima Thule -- 6 Mathematics and Logic in Wielka Ilustrowana Encyklopedja Powszechna "Gutenberga" -- 7 Mathematics and Logic in Świat i Życie: Zarys Encyklopedyczny Współczesnej Wiedzy i Kultury -- 8 Mathematics and Logic in Poradnik Dla Samouków -- 9 Conclusion -- References -- From the War Against Errors to Mathematics After the War: Public Discourses on a New Mathematical Dictionary -- 1 Introduction -- 2 Mathematical Dictionaries Before the War -- 2.1 Miller and the Context of the MAA -- 2.2 American Dictionaries and European Innovations -- 2.3 A ``Protest Against Such A Butchery of Their Subject'' -- 2.4 Miller on the Needs of Fledgling American Mathematicians -- 3 During the War: Solidifying Content and Intent -- 3.1 Mathematics as the Tower of Babel -- 3.2 Making Higher Mathematics Accessible -- 3.3 Showcasing Scholarship and Testing Leadership -- 4 Aftermath -- 5 Conclusion -- References -- International Geodesy in the Post-war Period, as Seen by the French Bureau des Longitudes (1917-1922) -- 1 Introduction -- 2 International Geodesy Confederations, a Short History.
3 Echo of International Geodetic Works Inside the Bureau des Longitudes -- 4 The French Geodetic Commission -- 5 Proposals of a New Post-war Geodetic Grouping (1918-1919) -- 6 Toward the Constitution of an International Union in Geodesy (1920-1921) -- 7 The Congress of Rome (1922) -- 8 Conclusion -- Archival Sources -- "The First Mathematically Serious German School of Applied Mathematics"? -- 1 Introduction, in Particular Ostrowski's View of the Von Mises School -- 2 The Prehistory of the Rise of Applied Mathematics in Berlin -- 3 The First Beginnings of the Institute and Von Mises' Struggle for Its Consolidation During the 1920s -- 4 The Fight Between University- and TH-Mathematicians in Berlin Over the Exam for Applied Mathematics and Controversies Between Hamel and Von Mises -- 5 Conclusions -- Appendix -- References -- The Mathematics of Nonlinear Oscillations in the 1920s: A Decade of Trials and Convergence? Examples of the Work of Nicolai Minorsky -- 1 Introduction -- 2 The Work of Nicolai Minorsky Until 1923 -- 2.1 Who Is Minorsky? -- 2.2 Minorsky and the Stability of Ships -- 2.3 1923: Trial Runs on the USS New Mexico -- 3 Looking for Theories of Nonlinear Oscillations in the 1920s -- 3.1 The Linear Oscillations Paradigm Until 1918 -- 3.2 A Decade of Trials and Analogy? -- 3.3 From Poincaré to Andronov: New Theories from the USSR -- 3.4 A Growing Community? -- 4 Minorsky and the Mathematics of Nonlinear Oscillations -- 5 Conclusion -- References -- From Fundamenta Mathematicae to Studia Mathematica: The Renaissance of Polish mathematics in light of Banach's publications 1919-1940 -- 1 Introduction -- 2 Fundamenta Mathematicae (est. 1920) -- 2.1 Birth of a Mathematical Journal -- 2.2 Banach's Contributions to Fundamenta Mathematicae -- 3 Studia Mathematica (est. 1929) -- 3.1 A Journal Dedicated to Functional Analysis.
3.2 Banach's Contributions to Studia Mathematica -- 4 Conclusion -- 5 Appendix -- References -- Following Béla von Kerékjártó. The Journeys of a Hungarian Mathematician in the Post-war World -- 1 Introduction -- 2 The Beginning of Béla von Kerékjártó's Career in Hungary -- 2.1 Hungary in the Austro-hungarian Empire at the Turn of the Twentieth Century and After the Great War -- 2.2 A Young Mathematician in a Shaken Hungary -- 2.3 The Faculty of Arts and Sciences of Budapest -- 2.4 The University Ferenc József of Szeged -- 3 Béla von Kerékjártó's Time as a Privat Docent at Göttingen: Writing Vorlesungen Über Topologie -- 3.1 Topology Discoveries at the Turn of the Twentieth Century -- 3.2 Vorlesungen über Topologie -- 4 Contacting Fréchet at a Turn of His Career: Kerékjártó's Doorway to ``The Other Side'' -- 4.1 Maurice Fréchet in Strasbourg in the Aftermath of the Great War -- 4.2 Kerékjártó's Strategic Letters -- 4.3 The Letter from 8 December 1923 -- 4.4 How Is the Theory of Abstract Spaces Perceived in the Exchanges -- 5 Conclusion -- 6 Appendix : Béla von Kerékjártó's Letter to Maurice Fréchet, 8 December 1923 -- References -- Under the Protection of Alien Wings. Russian Emigrant Mathematiciancs in Interwar France: A General Picture and Two Case Studies of Ervand Kogbetliantz and Vladimir Kosticyn -- 1 Introduction -- 2 A Mathematical Road to Exile -- 2.1 To leave or to stay? A shaky timeline and rare departures -- 2.2 Professional socializing academic networks and mathematics -- 2.3 A typology of Russian mathematicians in exile in Paris -- 3 Ervand Kogbetliantz: The Randomness of a Walk -- 3.1 Early years -- 3.2 In the midst of the turmoil -- 3.3 The beginning of a French career -- 4 Vladimir Kosticyn: The Sorrow of Departure -- 4.1 A product of the Moscow school -- 4.2 On the Soviet stage -- 4.3 The Road to Calvary -- 5 Conclusion.
French Archival sources -- Index.
Record Nr. UNINA-9910483869103321
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Les mathématiques comme habitude de pensée : Les idées scientifiques de Pavel Florenski / / Renato Betti
Les mathématiques comme habitude de pensée : Les idées scientifiques de Pavel Florenski / / Renato Betti
Autore Betti Renato
Pubbl/distr/stampa Besançon, : Presses universitaires de Franche-Comté, 2022
Descrizione fisica 1 online resource (174 p.)
Altri autori (Persone) MazliakLaurent
SchmidAnne-Françoise
Collana Sciences : concepts et problèmes
Soggetto topico History & Philosophy Of Science
mathématiques
Russie
spiritualité
cosmologie
symbole
mathematics
Russia
spirituality
cosmology
symbol
matemáticas
Rusia
espiritualidad
cosmología
símbolo
Soggetto non controllato mathematics
Russia
spirituality
cosmology
symbol
ISBN 2-84867-947-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione fre
Record Nr. UNINA-9910629397403321
Betti Renato  
Besançon, : Presses universitaires de Franche-Comté, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Paul Lévy and Maurice Fréchet : 50 Years of Correspondence in 107 Letters / / by Marc Barbut, Bernard Locker, Laurent Mazliak
Paul Lévy and Maurice Fréchet : 50 Years of Correspondence in 107 Letters / / by Marc Barbut, Bernard Locker, Laurent Mazliak
Autore Barbut Marc
Edizione [1st ed. 2014.]
Pubbl/distr/stampa London : , : Springer London : , : Imprint : Springer, , 2014
Descrizione fisica 1 online resource (227 p.)
Disciplina 510.904
Collana Sources and Studies in the History of Mathematics and Physical Sciences
Soggetto topico History
Probabilities
Functional analysis
Mathematical physics
Mathematics
Social sciences
History of Science
Probability Theory and Stochastic Processes
Functional Analysis
Mathematical Physics
Mathematics in the Humanities and Social Sciences
ISBN 1-4471-5619-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Introduction to the correspondence -- 107 Letters from Paul Lévy to Maurice Fréchet.
Record Nr. UNINA-9910299975903321
Barbut Marc  
London : , : Springer London : , : Imprint : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The splendors and miseries of martingales : their history from the casino to mathematics / / edited by Laurent Mazliak, Glenn Shafer
The splendors and miseries of martingales : their history from the casino to mathematics / / edited by Laurent Mazliak, Glenn Shafer
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (419 pages)
Disciplina 780
Collana Trends in the History of Science
Soggetto topico Martingales (Mathematics)
Martingales (Matemàtica)
Soggetto genere / forma Llibres electrònics
ISBN 3-031-05988-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Introduction -- Contents -- Part I In the Beginning -- 1 The Origin and Multiple Meanings of Martingale -- 1 Introduction -- 2 From Probability Back to Gambling -- 3 Are Martingales Foolish? -- 4 An Excursion Around Martigues -- 5 Back to Harnesses -- 6 The Ultimate Treachery of Martingales -- 2 Martingales at the Casino -- 1 Prelude -- 2 Introduction -- 3 The Casino -- 3.1 Trente et Quarante -- 3.2 The Business Model -- 3.3 The Paris Casinos -- 4 Gamblers' Fallacies -- 4.1 Two Moralists -- 4.2 The Blatant Rogue -- 4.3 The Failed Mathematician -- 4.4 The Many-Talented Gambler -- 5 Betting Systems and Game Theory -- 3 Émile Borel's Denumerable Martingales, 1909-1949 -- 1 Introduction -- 2 Martingales of Fathers of Families -- 3 Borel's Martingales -- 4 The Dawn of Martingale Convergence: Jessen's Theorem and Lévy's Lemma -- 1 Introduction -- 2 Jessen's Theorem -- 2.1 Magister Thesis 1929 -- 2.2 Doctoral Thesis 1930 -- 2.3 The Acta Article 1934 -- 2.4 A Probabilistic Interlude 1934-1935 -- 2.5 After 1934 -- 3 Lévy's Lemma -- 3.1 Before 1930 -- 3.2 Lévy's Denumerable Probabilities -- *-20pt Part II Ville, Lévy and Doob -- 5 Did Jean Ville Invent Martingales? -- 1 Introduction -- 2 A Glimpse of Jean Ville -- 3 Probability as Ville Encountered It in the Early 1930s -- 4 Martingales in Probability Before Ville -- 5 Combining Game Theory with Denumerable Probability -- 6 Legacy -- 7 A Final Question -- 6 Paul Lévy's Perspective on Jean Ville and Martingales -- 1 Introduction -- 2 Lévy and His Martingale Condition -- 2.1 Lévy's Growing Interest in Probability -- 2.2 Genesis of Lévy's Martingale Condition -- 2.3 Chapter VIII of the Book Théorie de l'addition des variables aléatoires -- 3 Lévy Versus Ville -- 4 Conclusion -- 7 Doob at Lyon: Bringing Martingales Back to France -- 1 The Colloquium -- 2 Paul Lévy -- 3 Jean Ville -- 4 Joseph Doob.
5 At the Colloquium -- 6 Doob's Lecture -- 6.1 Strong Law of Large Numbers -- 6.2 Inverse Probability -- *-20pt Part III Modern Probability -- 8 Stochastic Processes in the Decades after 1950 -- 1 Introduction -- 2 Probability Around 1950 -- 2.1 Early Developments -- 2.2 ``Stochastic Processes'' -- 3 The Great Topics of the Years 1950-1965 -- 3.1 Markov Processes -- 3.2 Development of Soviet Probability -- 3.3 Classical Potential Theory and Probability -- 3.4 Theory of Martingales -- 3.5 Markov Processes and Potential -- 3.6 Special Markov Processes -- 3.7 Connections Between Markov Processes and Martingales -- 4 The Period 1965-1980 -- 4.1 The Stochastic Integral -- 4.2 Markov Processes -- 4.3 General Theory of Processes -- 4.4 Inequalities of Martingales and Analysis -- 4.5 Martingale Problems -- 4.6 ``Stochastic Mechanics'' -- 4.7 Relations to Physics -- 5 After 1980 -- 5.1 The ``Malliavin Calculus'' -- 5.2 Stochastic Differential Geometry -- 5.3 Distributions and White Noise -- 5.4 Large Deviations -- 5.5 Noncommutative Probability -- 5.6 Omissions -- 9 Martingales in Japan -- 1 Before 1960: Itô's Stochastic Analysis -- 2 Japanese Contributions to Martingales from 1961 to 1970 -- 2.1 The Doob-Meyer Decomposition Theorem for Supermartingales -- 2.2 Stochastic Integrals for Square-Integrable Martingales and Semimartingales -- 2.3 Martingale Representation Theorems -- 3 Japanese Contributions to Martingales After 1971 -- 3.1 Fisk-Stratonovich Symmetric Stochastic Integrals. Itô's Circle Operation -- 3.2 Itô-Tanaka's Formula and Local Times -- 3.3 Problems Concerning Filtrations -- 10 My Encounters with Martingales -- 1 Studying at the University of Berlin Right After the War -- 2 Collecting Building Blocks for Martingale Theory -- 3 A Year in Illinois -- 4 Final Work Till 1964 -- *-20pt Part IV Modern Applications.
11 Martingales in the Study of Randomness -- 1 Introduction -- 2 Richard von Mises's Collectives -- 3 Abraham Wald's Clarification -- 4 Jean Ville's Martingales -- 5 The Status Quo of the 1950s -- 6 The Invention of the Algorithmic Definition of Randomness in the 1960s -- 6.1 Kolmogorov -- 6.2 Solomonoff -- 6.3 Chaitin -- 7 Martin-Löf's Definition of Randomness -- 8 Claus-Peter Schnorr's Computable Martingales -- 9 Leonid Levin's Semimeasures -- 10 Characterizing Martin-Löf Randomness Using Complexity -- 10.1 Leonid Levin in the Soviet Union -- 10.2 Monotone Complexity: Levin and Schnorr -- 10.3 Prefix Complexity -- 11 After the 1970s -- 12 Encounters with Martingales in Statistics and Stochastic Optimization -- 1 Introduction -- 2 Setting the Stage -- 2.1 Harold Hotelling -- 2.2 Abraham Wald -- 2.3 Herbert Robbins -- 3 Sequential Testing and Confidence Intervals -- 3.1 Wald's Seminal Work During the Second World War -- 3.2 Sequential Tests with Power 1 and Confidence Sequences -- 3.3 BHAT and Time-Sequential Survival Analysis -- 4 Martingales in Sequential Design of Experiments and Bandit Problems -- 5 Stochastic Approximation (SA) and Adaptive SA -- 6 Martingales and Biorhythms in Time Series -- 7 Martingales in Stochastic Optimization, 1987-2021 -- 7.1 Contextual Bandits in Reinforcement Learning and Personalization, Modified Gradient Boosting and SA in AI -- 7.2 Joint State and Parameter Estimation in Hidden Markov Models, with Uncertainty Quantification -- 8 Concluding Remarks -- 13 Martingales in Survival Analysis -- 1 Introduction -- 2 The Hazard Rate and a Martingale Estimator -- 3 Stochastic Integration and Statistical Estimation -- 4 Stopping Times, Unbiasedness and Independent Censoring -- 5 Martingale Central Limit Theorems -- 6 Two-Sample Tests for Counting Processes -- 7 The Copenhagen Environment.
8 From Kaplan-Meier to the Empirical Transition Matrix -- 9 Pustulosis Palmo-Plantaris and ps: [/EMC pdfmark [/Subtype /Span /ActualText (k) /StPNE pdfmark [/StBMC pdfmarkkps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark-Sample Tests -- 10 The Cox Model -- 11 The Monograph Statistical Models Based on Counting Processes -- 12 Limitations of Martingales -- 14 Encounters with Martingales in Stochastic Control -- 1 Introduction -- 2 Frequency Domain Methods for Control and Estimation -- 3 Time Domain Methods for Control and Estimation -- 4 Nonlinear Stochastic Control -- 5 Some Other Related Stochastic Optimization Problems -- 6 Appendix (by Laurent Mazliak): Martingale Problems and Stochastic Control of General Processes -- 6.1 Strong and Weak Solutions of Stochastic Differential Equations. Martingale Problems -- 6.2 General Formulation of a Control Problem -- *-20pt Part V Documents -- 15 Analysis or Probability? Eight Letters Between Børge Jessen and Paul Lévy -- 1 Introduction -- 2 Lévy to Jessen. Paris, 27 September 1934 -- 3 Lévy to Jessen. Paris, 4 April 1935 -- 4 Jessen to Lévy. Undated Draft, About 8 April 1935 -- 5 Lévy to Jessen. Hennequeville, 24 April 1935 -- 6 Lévy to Jessen. Paris, 3 May 1935 -- 7 Jessen to Lévy. Copenhagen, 11 August 1935 -- 8 Lévy to Jessen. S. Cristina, 23 August 1935 -- 9 Bohr and Jessen to Lévy. Copenhagen, 14 July 1947 -- 16 Counterexamples to Abstract Probability: Ten Letters by Jessen, Doob and Dieudonné -- 1 Introduction -- 2 Jessen to Doob, 11 May 1948 -- 3 Doob to Jessen, 17 May 1948 -- 4 Jessen to Doob, 29 May 1948 -- 5 Doob to Jessen, 4 June 1948 -- 6 Jessen to Dieudonné, 17 June 1948 -- 7 Dieudonné to Jessen, Nancy, 28 June 1948 -- 8 Jessen to Dieudonné, 13 September 1948 -- 9 Jessen to Doob, 13 September 1948 -- 10 Jessen to Doob, 17 May 1949 -- 11 Jessen to Doob, 23 June 1949.
17 Jean Ville Remembers Martingales -- 1 Introduction -- 2 Letter from Crépel to Ville, 22 August 1984 -- 3 Crépel's Interview of Ville, 27 August 1984 -- 3.1 Mathematics in France in the 1930s -- 3.2 Vienna and Karl Menger -- 3.3 Random Sequences and Martingales -- 3.4 Probability Back in France -- 3.5 Other Aspects of Probability -- 3.6 Economics -- 3.7 Computing at the University of Paris -- 4 Letter from Crépel to Ville, 21 January 1985 -- 5 Letter from Ville to Crépel, 2 February 1985 -- 5.1 First Note -- 5.2 Second Note -- 5.3 Third Note -- 18 Seven Letters from Paul Lévy to Maurice Fréchet -- 1 Introduction -- 19 Andrei Kolmogorov and Leonid Levin on Randomness -- 1 Introduction -- 2 Letter from Kolmogorov to Fréchet, 1939 -- 3 Abstracts of Three Talks by Kolmogorov, 1967-1974 -- 3.1 31 October 1967 -- 3.2 23 November 1971 -- 3.3 16 April 1974 -- 4 Three Letters from Levin to Kolmogorov 1970-1971 -- 4.1 Letter I -- 4.2 Letter II -- 4.3 Letter III -- Index.
Record Nr. UNINA-9910619278903321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The splendors and miseries of martingales : their history from the casino to mathematics / / edited by Laurent Mazliak, Glenn Shafer
The splendors and miseries of martingales : their history from the casino to mathematics / / edited by Laurent Mazliak, Glenn Shafer
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (419 pages)
Disciplina 780
Collana Trends in the History of Science
Soggetto topico Martingales (Mathematics)
Martingales (Matemàtica)
Soggetto genere / forma Llibres electrònics
ISBN 3-031-05988-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Introduction -- Contents -- Part I In the Beginning -- 1 The Origin and Multiple Meanings of Martingale -- 1 Introduction -- 2 From Probability Back to Gambling -- 3 Are Martingales Foolish? -- 4 An Excursion Around Martigues -- 5 Back to Harnesses -- 6 The Ultimate Treachery of Martingales -- 2 Martingales at the Casino -- 1 Prelude -- 2 Introduction -- 3 The Casino -- 3.1 Trente et Quarante -- 3.2 The Business Model -- 3.3 The Paris Casinos -- 4 Gamblers' Fallacies -- 4.1 Two Moralists -- 4.2 The Blatant Rogue -- 4.3 The Failed Mathematician -- 4.4 The Many-Talented Gambler -- 5 Betting Systems and Game Theory -- 3 Émile Borel's Denumerable Martingales, 1909-1949 -- 1 Introduction -- 2 Martingales of Fathers of Families -- 3 Borel's Martingales -- 4 The Dawn of Martingale Convergence: Jessen's Theorem and Lévy's Lemma -- 1 Introduction -- 2 Jessen's Theorem -- 2.1 Magister Thesis 1929 -- 2.2 Doctoral Thesis 1930 -- 2.3 The Acta Article 1934 -- 2.4 A Probabilistic Interlude 1934-1935 -- 2.5 After 1934 -- 3 Lévy's Lemma -- 3.1 Before 1930 -- 3.2 Lévy's Denumerable Probabilities -- *-20pt Part II Ville, Lévy and Doob -- 5 Did Jean Ville Invent Martingales? -- 1 Introduction -- 2 A Glimpse of Jean Ville -- 3 Probability as Ville Encountered It in the Early 1930s -- 4 Martingales in Probability Before Ville -- 5 Combining Game Theory with Denumerable Probability -- 6 Legacy -- 7 A Final Question -- 6 Paul Lévy's Perspective on Jean Ville and Martingales -- 1 Introduction -- 2 Lévy and His Martingale Condition -- 2.1 Lévy's Growing Interest in Probability -- 2.2 Genesis of Lévy's Martingale Condition -- 2.3 Chapter VIII of the Book Théorie de l'addition des variables aléatoires -- 3 Lévy Versus Ville -- 4 Conclusion -- 7 Doob at Lyon: Bringing Martingales Back to France -- 1 The Colloquium -- 2 Paul Lévy -- 3 Jean Ville -- 4 Joseph Doob.
5 At the Colloquium -- 6 Doob's Lecture -- 6.1 Strong Law of Large Numbers -- 6.2 Inverse Probability -- *-20pt Part III Modern Probability -- 8 Stochastic Processes in the Decades after 1950 -- 1 Introduction -- 2 Probability Around 1950 -- 2.1 Early Developments -- 2.2 ``Stochastic Processes'' -- 3 The Great Topics of the Years 1950-1965 -- 3.1 Markov Processes -- 3.2 Development of Soviet Probability -- 3.3 Classical Potential Theory and Probability -- 3.4 Theory of Martingales -- 3.5 Markov Processes and Potential -- 3.6 Special Markov Processes -- 3.7 Connections Between Markov Processes and Martingales -- 4 The Period 1965-1980 -- 4.1 The Stochastic Integral -- 4.2 Markov Processes -- 4.3 General Theory of Processes -- 4.4 Inequalities of Martingales and Analysis -- 4.5 Martingale Problems -- 4.6 ``Stochastic Mechanics'' -- 4.7 Relations to Physics -- 5 After 1980 -- 5.1 The ``Malliavin Calculus'' -- 5.2 Stochastic Differential Geometry -- 5.3 Distributions and White Noise -- 5.4 Large Deviations -- 5.5 Noncommutative Probability -- 5.6 Omissions -- 9 Martingales in Japan -- 1 Before 1960: Itô's Stochastic Analysis -- 2 Japanese Contributions to Martingales from 1961 to 1970 -- 2.1 The Doob-Meyer Decomposition Theorem for Supermartingales -- 2.2 Stochastic Integrals for Square-Integrable Martingales and Semimartingales -- 2.3 Martingale Representation Theorems -- 3 Japanese Contributions to Martingales After 1971 -- 3.1 Fisk-Stratonovich Symmetric Stochastic Integrals. Itô's Circle Operation -- 3.2 Itô-Tanaka's Formula and Local Times -- 3.3 Problems Concerning Filtrations -- 10 My Encounters with Martingales -- 1 Studying at the University of Berlin Right After the War -- 2 Collecting Building Blocks for Martingale Theory -- 3 A Year in Illinois -- 4 Final Work Till 1964 -- *-20pt Part IV Modern Applications.
11 Martingales in the Study of Randomness -- 1 Introduction -- 2 Richard von Mises's Collectives -- 3 Abraham Wald's Clarification -- 4 Jean Ville's Martingales -- 5 The Status Quo of the 1950s -- 6 The Invention of the Algorithmic Definition of Randomness in the 1960s -- 6.1 Kolmogorov -- 6.2 Solomonoff -- 6.3 Chaitin -- 7 Martin-Löf's Definition of Randomness -- 8 Claus-Peter Schnorr's Computable Martingales -- 9 Leonid Levin's Semimeasures -- 10 Characterizing Martin-Löf Randomness Using Complexity -- 10.1 Leonid Levin in the Soviet Union -- 10.2 Monotone Complexity: Levin and Schnorr -- 10.3 Prefix Complexity -- 11 After the 1970s -- 12 Encounters with Martingales in Statistics and Stochastic Optimization -- 1 Introduction -- 2 Setting the Stage -- 2.1 Harold Hotelling -- 2.2 Abraham Wald -- 2.3 Herbert Robbins -- 3 Sequential Testing and Confidence Intervals -- 3.1 Wald's Seminal Work During the Second World War -- 3.2 Sequential Tests with Power 1 and Confidence Sequences -- 3.3 BHAT and Time-Sequential Survival Analysis -- 4 Martingales in Sequential Design of Experiments and Bandit Problems -- 5 Stochastic Approximation (SA) and Adaptive SA -- 6 Martingales and Biorhythms in Time Series -- 7 Martingales in Stochastic Optimization, 1987-2021 -- 7.1 Contextual Bandits in Reinforcement Learning and Personalization, Modified Gradient Boosting and SA in AI -- 7.2 Joint State and Parameter Estimation in Hidden Markov Models, with Uncertainty Quantification -- 8 Concluding Remarks -- 13 Martingales in Survival Analysis -- 1 Introduction -- 2 The Hazard Rate and a Martingale Estimator -- 3 Stochastic Integration and Statistical Estimation -- 4 Stopping Times, Unbiasedness and Independent Censoring -- 5 Martingale Central Limit Theorems -- 6 Two-Sample Tests for Counting Processes -- 7 The Copenhagen Environment.
8 From Kaplan-Meier to the Empirical Transition Matrix -- 9 Pustulosis Palmo-Plantaris and ps: [/EMC pdfmark [/Subtype /Span /ActualText (k) /StPNE pdfmark [/StBMC pdfmarkkps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark-Sample Tests -- 10 The Cox Model -- 11 The Monograph Statistical Models Based on Counting Processes -- 12 Limitations of Martingales -- 14 Encounters with Martingales in Stochastic Control -- 1 Introduction -- 2 Frequency Domain Methods for Control and Estimation -- 3 Time Domain Methods for Control and Estimation -- 4 Nonlinear Stochastic Control -- 5 Some Other Related Stochastic Optimization Problems -- 6 Appendix (by Laurent Mazliak): Martingale Problems and Stochastic Control of General Processes -- 6.1 Strong and Weak Solutions of Stochastic Differential Equations. Martingale Problems -- 6.2 General Formulation of a Control Problem -- *-20pt Part V Documents -- 15 Analysis or Probability? Eight Letters Between Børge Jessen and Paul Lévy -- 1 Introduction -- 2 Lévy to Jessen. Paris, 27 September 1934 -- 3 Lévy to Jessen. Paris, 4 April 1935 -- 4 Jessen to Lévy. Undated Draft, About 8 April 1935 -- 5 Lévy to Jessen. Hennequeville, 24 April 1935 -- 6 Lévy to Jessen. Paris, 3 May 1935 -- 7 Jessen to Lévy. Copenhagen, 11 August 1935 -- 8 Lévy to Jessen. S. Cristina, 23 August 1935 -- 9 Bohr and Jessen to Lévy. Copenhagen, 14 July 1947 -- 16 Counterexamples to Abstract Probability: Ten Letters by Jessen, Doob and Dieudonné -- 1 Introduction -- 2 Jessen to Doob, 11 May 1948 -- 3 Doob to Jessen, 17 May 1948 -- 4 Jessen to Doob, 29 May 1948 -- 5 Doob to Jessen, 4 June 1948 -- 6 Jessen to Dieudonné, 17 June 1948 -- 7 Dieudonné to Jessen, Nancy, 28 June 1948 -- 8 Jessen to Dieudonné, 13 September 1948 -- 9 Jessen to Doob, 13 September 1948 -- 10 Jessen to Doob, 17 May 1949 -- 11 Jessen to Doob, 23 June 1949.
17 Jean Ville Remembers Martingales -- 1 Introduction -- 2 Letter from Crépel to Ville, 22 August 1984 -- 3 Crépel's Interview of Ville, 27 August 1984 -- 3.1 Mathematics in France in the 1930s -- 3.2 Vienna and Karl Menger -- 3.3 Random Sequences and Martingales -- 3.4 Probability Back in France -- 3.5 Other Aspects of Probability -- 3.6 Economics -- 3.7 Computing at the University of Paris -- 4 Letter from Crépel to Ville, 21 January 1985 -- 5 Letter from Ville to Crépel, 2 February 1985 -- 5.1 First Note -- 5.2 Second Note -- 5.3 Third Note -- 18 Seven Letters from Paul Lévy to Maurice Fréchet -- 1 Introduction -- 19 Andrei Kolmogorov and Leonid Levin on Randomness -- 1 Introduction -- 2 Letter from Kolmogorov to Fréchet, 1939 -- 3 Abstracts of Three Talks by Kolmogorov, 1967-1974 -- 3.1 31 October 1967 -- 3.2 23 November 1971 -- 3.3 16 April 1974 -- 4 Three Letters from Levin to Kolmogorov 1970-1971 -- 4.1 Letter I -- 4.2 Letter II -- 4.3 Letter III -- Index.
Record Nr. UNISA-996495169703316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui