Des mathématiciens et des guerres : Histoires de confrontations (XIXe-XXe siècle) / / Antonin Durand, Laurent Mazliak, Rossana Tazzioli
| Des mathématiciens et des guerres : Histoires de confrontations (XIXe-XXe siècle) / / Antonin Durand, Laurent Mazliak, Rossana Tazzioli |
| Autore | Anizan Anne-Laure |
| Pubbl/distr/stampa | Paris, : CNRS Éditions, 2019 |
| Descrizione fisica | 1 online resource (126 p.) |
| Altri autori (Persone) |
DurandAntonin
JournoudPierre MaletAntoni PaumierAnne-Sandrine PrevostJean-Guy TazzioliRossana ThomasWilliam MazliakLaurent |
| Soggetto topico |
War and mathematics
Mathematicians - Attitudes Mathematicians - Political activity Mathematics - History - 19th century Mathematics - History - 20th century |
| Soggetto non controllato |
mathématiques
communication guerre histoire militaire |
| ISBN | 2-271-12995-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | fre |
| Record Nr. | UNINA-9910353340003321 |
Anizan Anne-Laure
|
||
| Paris, : CNRS Éditions, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Images of Italian Mathematics in France : The Latin Sisters, from Risorgimento to Fascism / / edited by Frédéric Brechenmacher, Guillaume Jouve, Laurent Mazliak, Rossana Tazzioli
| Images of Italian Mathematics in France : The Latin Sisters, from Risorgimento to Fascism / / edited by Frédéric Brechenmacher, Guillaume Jouve, Laurent Mazliak, Rossana Tazzioli |
| Edizione | [1st ed. 2016.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2016 |
| Descrizione fisica | 1 online resource (315 p.) |
| Disciplina | 510 |
| Collana | Trends in the History of Science |
| Soggetto topico |
Mathematics
History History of Mathematical Sciences |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | A. Durand: Daladier’s stay in Italy in 1910: a mirror of the French look at Italy -- Introduction -- P. Crépel: Italian Mathematicians as seen by French biographical dictionaries in the 19th century -- F. Brechenmacher: The 27 Italies of Camille Jordan -- A. Brigaglia: Picard and the Italian Mathematicians: the History of three Prix Bordin -- A. Guerraggio, F. Jaeck, L. Mazliak: Lines on the Horizon -- E. Luciano: The French ‘Analysts’ and Peano’s Mathematical Logic -- P. Cantù: Louis Rougier’s reception of the Peano School -- R. Tazzioli: The eyes of French mathematicians on Tullio Levi-Civita – the case of hydrodynamics (1900-1930) -- A. Capristo: French mathematicians at the Bologna Congress (1928). |
| Record Nr. | UNINA-9910136622903321 |
| Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mathematical communities in the reconstruction after the Great War 1918-1928 : trajectories and institutions / / Laurent Mazliak, Rossana Tazzioli, editors
| Mathematical communities in the reconstruction after the Great War 1918-1928 : trajectories and institutions / / Laurent Mazliak, Rossana Tazzioli, editors |
| Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2021] |
| Descrizione fisica | 1 online resource (xvi, 363 pages) : illustrations |
| Disciplina | 510.94 |
| Collana | Trends in the history of science |
| Soggetto topico |
Reconstruction (1914-1939) - Europe
Mathematics - Europe - History Reconstrucció, 1914-1939 Història de la matemàtica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-61683-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Introduction -- The Roaring Mathematical Twenties 1918-1928 -- References -- Contents -- William Henry Young, an Unconventional President of the International Mathematical Union -- 1 Introduction -- 2 The Troubled Existence of the International Mathematical Union -- 2.1 The Difficult Situation in Which Science Found Itself in the Aftermath of the Great War -- 2.2 Early Resistance to the Exclusion Policy -- 2.3 The International Mathematical Union: A Subordinate Institution -- 2.4 Further International Congresses in the 1920s -- 3 William Henry Young -- 3.1 William Henry Young: The Person -- 3.2 William Henry Young: The Mathematician -- 4 Young's Presidency of the International Mathematical Union -- 5 Conclusions -- References -- The Unione Matematica Italiana and Its Bollettino, 1922-1928. National and International Aspects -- 1 Introduction -- 2 The Foundation of the UMI in the International Context -- 3 What Were the UMI and BUMI Modeled After? -- 4 The UMI on the International Scene: The 1924 ICM in Toronto -- 5 The International Congress of Mathematicians, Bologna 1928 -- 6 UMI's Change in Attitude Towards Fascism -- 7 Conclusions -- Archival Sources -- References -- L'Enseignement Mathématique and Its Internationalist Ambitions During the Turmoil of WWI and the 1920s -- 1 Introduction -- 2 International Configuration of the Pre-war Mathematical World as Depicted in L'Enseignement Mathématique -- 2.1 Laisant and Fehr: Building an Internationale of Mathematical Educators -- 2.2 The CIEM as Presented in the EM's Chronique Section-A Geographical Representation of the Educational Mathematical World? -- 3 Internationalist Editorial Practices in EM During and in the Immediate Aftermath of the War -- 3.1 EM Covers: Not in Step with the Times? -- 3.2 Maintaining the Journal's Ambition and Bibliographical Bulletin During the War.
3.3 Maintaining a Chronique Dedicated to the CIEM, or How Directing the (Possibly Virtual) Activity of an International Scientific Organization -- 4 EM's Path in the World of the 1920s -- 4.1 Internationalism in the Mathematical Editorial World of the 1920s, Practical Difficulties and the New Geopolitical Situation -- 4.2 EM and the CIEM: The New Position of International Institutions -- 5 Conclusion -- Archival Sources -- Mathematics and Logic in Polish Encyclopedias Published During the Interwar Period -- 1 Introduction -- 2 Historical Background -- 3 Encyclopedias Published in Interwar Poland -- 4 Mathematics and Logic in Ilustrowana Encyklopedia Trzaski, Everta i Michalskiego -- 5 Mathematics and Logic in the Encyklopedia Powszechna Ultima Thule -- 6 Mathematics and Logic in Wielka Ilustrowana Encyklopedja Powszechna "Gutenberga" -- 7 Mathematics and Logic in Świat i Życie: Zarys Encyklopedyczny Współczesnej Wiedzy i Kultury -- 8 Mathematics and Logic in Poradnik Dla Samouków -- 9 Conclusion -- References -- From the War Against Errors to Mathematics After the War: Public Discourses on a New Mathematical Dictionary -- 1 Introduction -- 2 Mathematical Dictionaries Before the War -- 2.1 Miller and the Context of the MAA -- 2.2 American Dictionaries and European Innovations -- 2.3 A ``Protest Against Such A Butchery of Their Subject'' -- 2.4 Miller on the Needs of Fledgling American Mathematicians -- 3 During the War: Solidifying Content and Intent -- 3.1 Mathematics as the Tower of Babel -- 3.2 Making Higher Mathematics Accessible -- 3.3 Showcasing Scholarship and Testing Leadership -- 4 Aftermath -- 5 Conclusion -- References -- International Geodesy in the Post-war Period, as Seen by the French Bureau des Longitudes (1917-1922) -- 1 Introduction -- 2 International Geodesy Confederations, a Short History. 3 Echo of International Geodetic Works Inside the Bureau des Longitudes -- 4 The French Geodetic Commission -- 5 Proposals of a New Post-war Geodetic Grouping (1918-1919) -- 6 Toward the Constitution of an International Union in Geodesy (1920-1921) -- 7 The Congress of Rome (1922) -- 8 Conclusion -- Archival Sources -- "The First Mathematically Serious German School of Applied Mathematics"? -- 1 Introduction, in Particular Ostrowski's View of the Von Mises School -- 2 The Prehistory of the Rise of Applied Mathematics in Berlin -- 3 The First Beginnings of the Institute and Von Mises' Struggle for Its Consolidation During the 1920s -- 4 The Fight Between University- and TH-Mathematicians in Berlin Over the Exam for Applied Mathematics and Controversies Between Hamel and Von Mises -- 5 Conclusions -- Appendix -- References -- The Mathematics of Nonlinear Oscillations in the 1920s: A Decade of Trials and Convergence? Examples of the Work of Nicolai Minorsky -- 1 Introduction -- 2 The Work of Nicolai Minorsky Until 1923 -- 2.1 Who Is Minorsky? -- 2.2 Minorsky and the Stability of Ships -- 2.3 1923: Trial Runs on the USS New Mexico -- 3 Looking for Theories of Nonlinear Oscillations in the 1920s -- 3.1 The Linear Oscillations Paradigm Until 1918 -- 3.2 A Decade of Trials and Analogy? -- 3.3 From Poincaré to Andronov: New Theories from the USSR -- 3.4 A Growing Community? -- 4 Minorsky and the Mathematics of Nonlinear Oscillations -- 5 Conclusion -- References -- From Fundamenta Mathematicae to Studia Mathematica: The Renaissance of Polish mathematics in light of Banach's publications 1919-1940 -- 1 Introduction -- 2 Fundamenta Mathematicae (est. 1920) -- 2.1 Birth of a Mathematical Journal -- 2.2 Banach's Contributions to Fundamenta Mathematicae -- 3 Studia Mathematica (est. 1929) -- 3.1 A Journal Dedicated to Functional Analysis. 3.2 Banach's Contributions to Studia Mathematica -- 4 Conclusion -- 5 Appendix -- References -- Following Béla von Kerékjártó. The Journeys of a Hungarian Mathematician in the Post-war World -- 1 Introduction -- 2 The Beginning of Béla von Kerékjártó's Career in Hungary -- 2.1 Hungary in the Austro-hungarian Empire at the Turn of the Twentieth Century and After the Great War -- 2.2 A Young Mathematician in a Shaken Hungary -- 2.3 The Faculty of Arts and Sciences of Budapest -- 2.4 The University Ferenc József of Szeged -- 3 Béla von Kerékjártó's Time as a Privat Docent at Göttingen: Writing Vorlesungen Über Topologie -- 3.1 Topology Discoveries at the Turn of the Twentieth Century -- 3.2 Vorlesungen über Topologie -- 4 Contacting Fréchet at a Turn of His Career: Kerékjártó's Doorway to ``The Other Side'' -- 4.1 Maurice Fréchet in Strasbourg in the Aftermath of the Great War -- 4.2 Kerékjártó's Strategic Letters -- 4.3 The Letter from 8 December 1923 -- 4.4 How Is the Theory of Abstract Spaces Perceived in the Exchanges -- 5 Conclusion -- 6 Appendix : Béla von Kerékjártó's Letter to Maurice Fréchet, 8 December 1923 -- References -- Under the Protection of Alien Wings. Russian Emigrant Mathematiciancs in Interwar France: A General Picture and Two Case Studies of Ervand Kogbetliantz and Vladimir Kosticyn -- 1 Introduction -- 2 A Mathematical Road to Exile -- 2.1 To leave or to stay? A shaky timeline and rare departures -- 2.2 Professional socializing academic networks and mathematics -- 2.3 A typology of Russian mathematicians in exile in Paris -- 3 Ervand Kogbetliantz: The Randomness of a Walk -- 3.1 Early years -- 3.2 In the midst of the turmoil -- 3.3 The beginning of a French career -- 4 Vladimir Kosticyn: The Sorrow of Departure -- 4.1 A product of the Moscow school -- 4.2 On the Soviet stage -- 4.3 The Road to Calvary -- 5 Conclusion. French Archival sources -- Index. |
| Record Nr. | UNISA-996466554603316 |
| Cham, Switzerland : , : Birkhäuser, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Mathematical communities in the reconstruction after the Great War 1918-1928 : trajectories and institutions / / Laurent Mazliak, Rossana Tazzioli, editors
| Mathematical communities in the reconstruction after the Great War 1918-1928 : trajectories and institutions / / Laurent Mazliak, Rossana Tazzioli, editors |
| Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2021] |
| Descrizione fisica | 1 online resource (xvi, 363 pages) : illustrations |
| Disciplina | 510.94 |
| Collana | Trends in the history of science |
| Soggetto topico |
Reconstruction (1914-1939) - Europe
Mathematics - Europe - History Reconstrucció, 1914-1939 Història de la matemàtica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-61683-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Introduction -- The Roaring Mathematical Twenties 1918-1928 -- References -- Contents -- William Henry Young, an Unconventional President of the International Mathematical Union -- 1 Introduction -- 2 The Troubled Existence of the International Mathematical Union -- 2.1 The Difficult Situation in Which Science Found Itself in the Aftermath of the Great War -- 2.2 Early Resistance to the Exclusion Policy -- 2.3 The International Mathematical Union: A Subordinate Institution -- 2.4 Further International Congresses in the 1920s -- 3 William Henry Young -- 3.1 William Henry Young: The Person -- 3.2 William Henry Young: The Mathematician -- 4 Young's Presidency of the International Mathematical Union -- 5 Conclusions -- References -- The Unione Matematica Italiana and Its Bollettino, 1922-1928. National and International Aspects -- 1 Introduction -- 2 The Foundation of the UMI in the International Context -- 3 What Were the UMI and BUMI Modeled After? -- 4 The UMI on the International Scene: The 1924 ICM in Toronto -- 5 The International Congress of Mathematicians, Bologna 1928 -- 6 UMI's Change in Attitude Towards Fascism -- 7 Conclusions -- Archival Sources -- References -- L'Enseignement Mathématique and Its Internationalist Ambitions During the Turmoil of WWI and the 1920s -- 1 Introduction -- 2 International Configuration of the Pre-war Mathematical World as Depicted in L'Enseignement Mathématique -- 2.1 Laisant and Fehr: Building an Internationale of Mathematical Educators -- 2.2 The CIEM as Presented in the EM's Chronique Section-A Geographical Representation of the Educational Mathematical World? -- 3 Internationalist Editorial Practices in EM During and in the Immediate Aftermath of the War -- 3.1 EM Covers: Not in Step with the Times? -- 3.2 Maintaining the Journal's Ambition and Bibliographical Bulletin During the War.
3.3 Maintaining a Chronique Dedicated to the CIEM, or How Directing the (Possibly Virtual) Activity of an International Scientific Organization -- 4 EM's Path in the World of the 1920s -- 4.1 Internationalism in the Mathematical Editorial World of the 1920s, Practical Difficulties and the New Geopolitical Situation -- 4.2 EM and the CIEM: The New Position of International Institutions -- 5 Conclusion -- Archival Sources -- Mathematics and Logic in Polish Encyclopedias Published During the Interwar Period -- 1 Introduction -- 2 Historical Background -- 3 Encyclopedias Published in Interwar Poland -- 4 Mathematics and Logic in Ilustrowana Encyklopedia Trzaski, Everta i Michalskiego -- 5 Mathematics and Logic in the Encyklopedia Powszechna Ultima Thule -- 6 Mathematics and Logic in Wielka Ilustrowana Encyklopedja Powszechna "Gutenberga" -- 7 Mathematics and Logic in Świat i Życie: Zarys Encyklopedyczny Współczesnej Wiedzy i Kultury -- 8 Mathematics and Logic in Poradnik Dla Samouków -- 9 Conclusion -- References -- From the War Against Errors to Mathematics After the War: Public Discourses on a New Mathematical Dictionary -- 1 Introduction -- 2 Mathematical Dictionaries Before the War -- 2.1 Miller and the Context of the MAA -- 2.2 American Dictionaries and European Innovations -- 2.3 A ``Protest Against Such A Butchery of Their Subject'' -- 2.4 Miller on the Needs of Fledgling American Mathematicians -- 3 During the War: Solidifying Content and Intent -- 3.1 Mathematics as the Tower of Babel -- 3.2 Making Higher Mathematics Accessible -- 3.3 Showcasing Scholarship and Testing Leadership -- 4 Aftermath -- 5 Conclusion -- References -- International Geodesy in the Post-war Period, as Seen by the French Bureau des Longitudes (1917-1922) -- 1 Introduction -- 2 International Geodesy Confederations, a Short History. 3 Echo of International Geodetic Works Inside the Bureau des Longitudes -- 4 The French Geodetic Commission -- 5 Proposals of a New Post-war Geodetic Grouping (1918-1919) -- 6 Toward the Constitution of an International Union in Geodesy (1920-1921) -- 7 The Congress of Rome (1922) -- 8 Conclusion -- Archival Sources -- "The First Mathematically Serious German School of Applied Mathematics"? -- 1 Introduction, in Particular Ostrowski's View of the Von Mises School -- 2 The Prehistory of the Rise of Applied Mathematics in Berlin -- 3 The First Beginnings of the Institute and Von Mises' Struggle for Its Consolidation During the 1920s -- 4 The Fight Between University- and TH-Mathematicians in Berlin Over the Exam for Applied Mathematics and Controversies Between Hamel and Von Mises -- 5 Conclusions -- Appendix -- References -- The Mathematics of Nonlinear Oscillations in the 1920s: A Decade of Trials and Convergence? Examples of the Work of Nicolai Minorsky -- 1 Introduction -- 2 The Work of Nicolai Minorsky Until 1923 -- 2.1 Who Is Minorsky? -- 2.2 Minorsky and the Stability of Ships -- 2.3 1923: Trial Runs on the USS New Mexico -- 3 Looking for Theories of Nonlinear Oscillations in the 1920s -- 3.1 The Linear Oscillations Paradigm Until 1918 -- 3.2 A Decade of Trials and Analogy? -- 3.3 From Poincaré to Andronov: New Theories from the USSR -- 3.4 A Growing Community? -- 4 Minorsky and the Mathematics of Nonlinear Oscillations -- 5 Conclusion -- References -- From Fundamenta Mathematicae to Studia Mathematica: The Renaissance of Polish mathematics in light of Banach's publications 1919-1940 -- 1 Introduction -- 2 Fundamenta Mathematicae (est. 1920) -- 2.1 Birth of a Mathematical Journal -- 2.2 Banach's Contributions to Fundamenta Mathematicae -- 3 Studia Mathematica (est. 1929) -- 3.1 A Journal Dedicated to Functional Analysis. 3.2 Banach's Contributions to Studia Mathematica -- 4 Conclusion -- 5 Appendix -- References -- Following Béla von Kerékjártó. The Journeys of a Hungarian Mathematician in the Post-war World -- 1 Introduction -- 2 The Beginning of Béla von Kerékjártó's Career in Hungary -- 2.1 Hungary in the Austro-hungarian Empire at the Turn of the Twentieth Century and After the Great War -- 2.2 A Young Mathematician in a Shaken Hungary -- 2.3 The Faculty of Arts and Sciences of Budapest -- 2.4 The University Ferenc József of Szeged -- 3 Béla von Kerékjártó's Time as a Privat Docent at Göttingen: Writing Vorlesungen Über Topologie -- 3.1 Topology Discoveries at the Turn of the Twentieth Century -- 3.2 Vorlesungen über Topologie -- 4 Contacting Fréchet at a Turn of His Career: Kerékjártó's Doorway to ``The Other Side'' -- 4.1 Maurice Fréchet in Strasbourg in the Aftermath of the Great War -- 4.2 Kerékjártó's Strategic Letters -- 4.3 The Letter from 8 December 1923 -- 4.4 How Is the Theory of Abstract Spaces Perceived in the Exchanges -- 5 Conclusion -- 6 Appendix : Béla von Kerékjártó's Letter to Maurice Fréchet, 8 December 1923 -- References -- Under the Protection of Alien Wings. Russian Emigrant Mathematiciancs in Interwar France: A General Picture and Two Case Studies of Ervand Kogbetliantz and Vladimir Kosticyn -- 1 Introduction -- 2 A Mathematical Road to Exile -- 2.1 To leave or to stay? A shaky timeline and rare departures -- 2.2 Professional socializing academic networks and mathematics -- 2.3 A typology of Russian mathematicians in exile in Paris -- 3 Ervand Kogbetliantz: The Randomness of a Walk -- 3.1 Early years -- 3.2 In the midst of the turmoil -- 3.3 The beginning of a French career -- 4 Vladimir Kosticyn: The Sorrow of Departure -- 4.1 A product of the Moscow school -- 4.2 On the Soviet stage -- 4.3 The Road to Calvary -- 5 Conclusion. French Archival sources -- Index. |
| Record Nr. | UNINA-9910483869103321 |
| Cham, Switzerland : , : Birkhäuser, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Les mathématiques comme habitude de pensée : Les idées scientifiques de Pavel Florenski / / Renato Betti
| Les mathématiques comme habitude de pensée : Les idées scientifiques de Pavel Florenski / / Renato Betti |
| Autore | Betti Renato |
| Pubbl/distr/stampa | Besançon, : Presses universitaires de Franche-Comté, 2022 |
| Descrizione fisica | 1 online resource (174 p.) |
| Altri autori (Persone) |
MazliakLaurent
SchmidAnne-Françoise |
| Collana | Sciences : concepts et problèmes |
| Soggetto topico |
History & Philosophy Of Science
mathématiques Russie spiritualité cosmologie symbole mathematics Russia spirituality cosmology symbol matemáticas Rusia espiritualidad cosmología símbolo |
| Soggetto non controllato |
mathematics
Russia spirituality cosmology symbol |
| ISBN | 2-84867-947-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | fre |
| Record Nr. | UNINA-9910629397403321 |
Betti Renato
|
||
| Besançon, : Presses universitaires de Franche-Comté, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Paul Lévy and Maurice Fréchet : 50 Years of Correspondence in 107 Letters / / by Marc Barbut, Bernard Locker, Laurent Mazliak
| Paul Lévy and Maurice Fréchet : 50 Years of Correspondence in 107 Letters / / by Marc Barbut, Bernard Locker, Laurent Mazliak |
| Autore | Barbut Marc |
| Edizione | [1st ed. 2014.] |
| Pubbl/distr/stampa | London : , : Springer London : , : Imprint : Springer, , 2014 |
| Descrizione fisica | 1 online resource (227 p.) |
| Disciplina | 510.904 |
| Collana | Sources and Studies in the History of Mathematics and Physical Sciences |
| Soggetto topico |
History
Probabilities Functional analysis Mathematical physics Mathematics Social sciences History of Science Probability Theory and Stochastic Processes Functional Analysis Mathematical Physics Mathematics in the Humanities and Social Sciences |
| ISBN | 1-4471-5619-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Introduction to the correspondence -- 107 Letters from Paul Lévy to Maurice Fréchet. |
| Record Nr. | UNINA-9910299975903321 |
Barbut Marc
|
||
| London : , : Springer London : , : Imprint : Springer, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The splendors and miseries of martingales : their history from the casino to mathematics / / edited by Laurent Mazliak, Glenn Shafer
| The splendors and miseries of martingales : their history from the casino to mathematics / / edited by Laurent Mazliak, Glenn Shafer |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (419 pages) |
| Disciplina | 780 |
| Collana | Trends in the History of Science |
| Soggetto topico |
Martingales (Mathematics)
Martingales (Matemàtica) |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-031-05988-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Introduction -- Contents -- Part I In the Beginning -- 1 The Origin and Multiple Meanings of Martingale -- 1 Introduction -- 2 From Probability Back to Gambling -- 3 Are Martingales Foolish? -- 4 An Excursion Around Martigues -- 5 Back to Harnesses -- 6 The Ultimate Treachery of Martingales -- 2 Martingales at the Casino -- 1 Prelude -- 2 Introduction -- 3 The Casino -- 3.1 Trente et Quarante -- 3.2 The Business Model -- 3.3 The Paris Casinos -- 4 Gamblers' Fallacies -- 4.1 Two Moralists -- 4.2 The Blatant Rogue -- 4.3 The Failed Mathematician -- 4.4 The Many-Talented Gambler -- 5 Betting Systems and Game Theory -- 3 Émile Borel's Denumerable Martingales, 1909-1949 -- 1 Introduction -- 2 Martingales of Fathers of Families -- 3 Borel's Martingales -- 4 The Dawn of Martingale Convergence: Jessen's Theorem and Lévy's Lemma -- 1 Introduction -- 2 Jessen's Theorem -- 2.1 Magister Thesis 1929 -- 2.2 Doctoral Thesis 1930 -- 2.3 The Acta Article 1934 -- 2.4 A Probabilistic Interlude 1934-1935 -- 2.5 After 1934 -- 3 Lévy's Lemma -- 3.1 Before 1930 -- 3.2 Lévy's Denumerable Probabilities -- *-20pt Part II Ville, Lévy and Doob -- 5 Did Jean Ville Invent Martingales? -- 1 Introduction -- 2 A Glimpse of Jean Ville -- 3 Probability as Ville Encountered It in the Early 1930s -- 4 Martingales in Probability Before Ville -- 5 Combining Game Theory with Denumerable Probability -- 6 Legacy -- 7 A Final Question -- 6 Paul Lévy's Perspective on Jean Ville and Martingales -- 1 Introduction -- 2 Lévy and His Martingale Condition -- 2.1 Lévy's Growing Interest in Probability -- 2.2 Genesis of Lévy's Martingale Condition -- 2.3 Chapter VIII of the Book Théorie de l'addition des variables aléatoires -- 3 Lévy Versus Ville -- 4 Conclusion -- 7 Doob at Lyon: Bringing Martingales Back to France -- 1 The Colloquium -- 2 Paul Lévy -- 3 Jean Ville -- 4 Joseph Doob.
5 At the Colloquium -- 6 Doob's Lecture -- 6.1 Strong Law of Large Numbers -- 6.2 Inverse Probability -- *-20pt Part III Modern Probability -- 8 Stochastic Processes in the Decades after 1950 -- 1 Introduction -- 2 Probability Around 1950 -- 2.1 Early Developments -- 2.2 ``Stochastic Processes'' -- 3 The Great Topics of the Years 1950-1965 -- 3.1 Markov Processes -- 3.2 Development of Soviet Probability -- 3.3 Classical Potential Theory and Probability -- 3.4 Theory of Martingales -- 3.5 Markov Processes and Potential -- 3.6 Special Markov Processes -- 3.7 Connections Between Markov Processes and Martingales -- 4 The Period 1965-1980 -- 4.1 The Stochastic Integral -- 4.2 Markov Processes -- 4.3 General Theory of Processes -- 4.4 Inequalities of Martingales and Analysis -- 4.5 Martingale Problems -- 4.6 ``Stochastic Mechanics'' -- 4.7 Relations to Physics -- 5 After 1980 -- 5.1 The ``Malliavin Calculus'' -- 5.2 Stochastic Differential Geometry -- 5.3 Distributions and White Noise -- 5.4 Large Deviations -- 5.5 Noncommutative Probability -- 5.6 Omissions -- 9 Martingales in Japan -- 1 Before 1960: Itô's Stochastic Analysis -- 2 Japanese Contributions to Martingales from 1961 to 1970 -- 2.1 The Doob-Meyer Decomposition Theorem for Supermartingales -- 2.2 Stochastic Integrals for Square-Integrable Martingales and Semimartingales -- 2.3 Martingale Representation Theorems -- 3 Japanese Contributions to Martingales After 1971 -- 3.1 Fisk-Stratonovich Symmetric Stochastic Integrals. Itô's Circle Operation -- 3.2 Itô-Tanaka's Formula and Local Times -- 3.3 Problems Concerning Filtrations -- 10 My Encounters with Martingales -- 1 Studying at the University of Berlin Right After the War -- 2 Collecting Building Blocks for Martingale Theory -- 3 A Year in Illinois -- 4 Final Work Till 1964 -- *-20pt Part IV Modern Applications. 11 Martingales in the Study of Randomness -- 1 Introduction -- 2 Richard von Mises's Collectives -- 3 Abraham Wald's Clarification -- 4 Jean Ville's Martingales -- 5 The Status Quo of the 1950s -- 6 The Invention of the Algorithmic Definition of Randomness in the 1960s -- 6.1 Kolmogorov -- 6.2 Solomonoff -- 6.3 Chaitin -- 7 Martin-Löf's Definition of Randomness -- 8 Claus-Peter Schnorr's Computable Martingales -- 9 Leonid Levin's Semimeasures -- 10 Characterizing Martin-Löf Randomness Using Complexity -- 10.1 Leonid Levin in the Soviet Union -- 10.2 Monotone Complexity: Levin and Schnorr -- 10.3 Prefix Complexity -- 11 After the 1970s -- 12 Encounters with Martingales in Statistics and Stochastic Optimization -- 1 Introduction -- 2 Setting the Stage -- 2.1 Harold Hotelling -- 2.2 Abraham Wald -- 2.3 Herbert Robbins -- 3 Sequential Testing and Confidence Intervals -- 3.1 Wald's Seminal Work During the Second World War -- 3.2 Sequential Tests with Power 1 and Confidence Sequences -- 3.3 BHAT and Time-Sequential Survival Analysis -- 4 Martingales in Sequential Design of Experiments and Bandit Problems -- 5 Stochastic Approximation (SA) and Adaptive SA -- 6 Martingales and Biorhythms in Time Series -- 7 Martingales in Stochastic Optimization, 1987-2021 -- 7.1 Contextual Bandits in Reinforcement Learning and Personalization, Modified Gradient Boosting and SA in AI -- 7.2 Joint State and Parameter Estimation in Hidden Markov Models, with Uncertainty Quantification -- 8 Concluding Remarks -- 13 Martingales in Survival Analysis -- 1 Introduction -- 2 The Hazard Rate and a Martingale Estimator -- 3 Stochastic Integration and Statistical Estimation -- 4 Stopping Times, Unbiasedness and Independent Censoring -- 5 Martingale Central Limit Theorems -- 6 Two-Sample Tests for Counting Processes -- 7 The Copenhagen Environment. 8 From Kaplan-Meier to the Empirical Transition Matrix -- 9 Pustulosis Palmo-Plantaris and ps: [/EMC pdfmark [/Subtype /Span /ActualText (k) /StPNE pdfmark [/StBMC pdfmarkkps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark-Sample Tests -- 10 The Cox Model -- 11 The Monograph Statistical Models Based on Counting Processes -- 12 Limitations of Martingales -- 14 Encounters with Martingales in Stochastic Control -- 1 Introduction -- 2 Frequency Domain Methods for Control and Estimation -- 3 Time Domain Methods for Control and Estimation -- 4 Nonlinear Stochastic Control -- 5 Some Other Related Stochastic Optimization Problems -- 6 Appendix (by Laurent Mazliak): Martingale Problems and Stochastic Control of General Processes -- 6.1 Strong and Weak Solutions of Stochastic Differential Equations. Martingale Problems -- 6.2 General Formulation of a Control Problem -- *-20pt Part V Documents -- 15 Analysis or Probability? Eight Letters Between Børge Jessen and Paul Lévy -- 1 Introduction -- 2 Lévy to Jessen. Paris, 27 September 1934 -- 3 Lévy to Jessen. Paris, 4 April 1935 -- 4 Jessen to Lévy. Undated Draft, About 8 April 1935 -- 5 Lévy to Jessen. Hennequeville, 24 April 1935 -- 6 Lévy to Jessen. Paris, 3 May 1935 -- 7 Jessen to Lévy. Copenhagen, 11 August 1935 -- 8 Lévy to Jessen. S. Cristina, 23 August 1935 -- 9 Bohr and Jessen to Lévy. Copenhagen, 14 July 1947 -- 16 Counterexamples to Abstract Probability: Ten Letters by Jessen, Doob and Dieudonné -- 1 Introduction -- 2 Jessen to Doob, 11 May 1948 -- 3 Doob to Jessen, 17 May 1948 -- 4 Jessen to Doob, 29 May 1948 -- 5 Doob to Jessen, 4 June 1948 -- 6 Jessen to Dieudonné, 17 June 1948 -- 7 Dieudonné to Jessen, Nancy, 28 June 1948 -- 8 Jessen to Dieudonné, 13 September 1948 -- 9 Jessen to Doob, 13 September 1948 -- 10 Jessen to Doob, 17 May 1949 -- 11 Jessen to Doob, 23 June 1949. 17 Jean Ville Remembers Martingales -- 1 Introduction -- 2 Letter from Crépel to Ville, 22 August 1984 -- 3 Crépel's Interview of Ville, 27 August 1984 -- 3.1 Mathematics in France in the 1930s -- 3.2 Vienna and Karl Menger -- 3.3 Random Sequences and Martingales -- 3.4 Probability Back in France -- 3.5 Other Aspects of Probability -- 3.6 Economics -- 3.7 Computing at the University of Paris -- 4 Letter from Crépel to Ville, 21 January 1985 -- 5 Letter from Ville to Crépel, 2 February 1985 -- 5.1 First Note -- 5.2 Second Note -- 5.3 Third Note -- 18 Seven Letters from Paul Lévy to Maurice Fréchet -- 1 Introduction -- 19 Andrei Kolmogorov and Leonid Levin on Randomness -- 1 Introduction -- 2 Letter from Kolmogorov to Fréchet, 1939 -- 3 Abstracts of Three Talks by Kolmogorov, 1967-1974 -- 3.1 31 October 1967 -- 3.2 23 November 1971 -- 3.3 16 April 1974 -- 4 Three Letters from Levin to Kolmogorov 1970-1971 -- 4.1 Letter I -- 4.2 Letter II -- 4.3 Letter III -- Index. |
| Record Nr. | UNINA-9910619278903321 |
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The splendors and miseries of martingales : their history from the casino to mathematics / / edited by Laurent Mazliak, Glenn Shafer
| The splendors and miseries of martingales : their history from the casino to mathematics / / edited by Laurent Mazliak, Glenn Shafer |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (419 pages) |
| Disciplina | 780 |
| Collana | Trends in the History of Science |
| Soggetto topico |
Martingales (Mathematics)
Martingales (Matemàtica) |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-031-05988-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Introduction -- Contents -- Part I In the Beginning -- 1 The Origin and Multiple Meanings of Martingale -- 1 Introduction -- 2 From Probability Back to Gambling -- 3 Are Martingales Foolish? -- 4 An Excursion Around Martigues -- 5 Back to Harnesses -- 6 The Ultimate Treachery of Martingales -- 2 Martingales at the Casino -- 1 Prelude -- 2 Introduction -- 3 The Casino -- 3.1 Trente et Quarante -- 3.2 The Business Model -- 3.3 The Paris Casinos -- 4 Gamblers' Fallacies -- 4.1 Two Moralists -- 4.2 The Blatant Rogue -- 4.3 The Failed Mathematician -- 4.4 The Many-Talented Gambler -- 5 Betting Systems and Game Theory -- 3 Émile Borel's Denumerable Martingales, 1909-1949 -- 1 Introduction -- 2 Martingales of Fathers of Families -- 3 Borel's Martingales -- 4 The Dawn of Martingale Convergence: Jessen's Theorem and Lévy's Lemma -- 1 Introduction -- 2 Jessen's Theorem -- 2.1 Magister Thesis 1929 -- 2.2 Doctoral Thesis 1930 -- 2.3 The Acta Article 1934 -- 2.4 A Probabilistic Interlude 1934-1935 -- 2.5 After 1934 -- 3 Lévy's Lemma -- 3.1 Before 1930 -- 3.2 Lévy's Denumerable Probabilities -- *-20pt Part II Ville, Lévy and Doob -- 5 Did Jean Ville Invent Martingales? -- 1 Introduction -- 2 A Glimpse of Jean Ville -- 3 Probability as Ville Encountered It in the Early 1930s -- 4 Martingales in Probability Before Ville -- 5 Combining Game Theory with Denumerable Probability -- 6 Legacy -- 7 A Final Question -- 6 Paul Lévy's Perspective on Jean Ville and Martingales -- 1 Introduction -- 2 Lévy and His Martingale Condition -- 2.1 Lévy's Growing Interest in Probability -- 2.2 Genesis of Lévy's Martingale Condition -- 2.3 Chapter VIII of the Book Théorie de l'addition des variables aléatoires -- 3 Lévy Versus Ville -- 4 Conclusion -- 7 Doob at Lyon: Bringing Martingales Back to France -- 1 The Colloquium -- 2 Paul Lévy -- 3 Jean Ville -- 4 Joseph Doob.
5 At the Colloquium -- 6 Doob's Lecture -- 6.1 Strong Law of Large Numbers -- 6.2 Inverse Probability -- *-20pt Part III Modern Probability -- 8 Stochastic Processes in the Decades after 1950 -- 1 Introduction -- 2 Probability Around 1950 -- 2.1 Early Developments -- 2.2 ``Stochastic Processes'' -- 3 The Great Topics of the Years 1950-1965 -- 3.1 Markov Processes -- 3.2 Development of Soviet Probability -- 3.3 Classical Potential Theory and Probability -- 3.4 Theory of Martingales -- 3.5 Markov Processes and Potential -- 3.6 Special Markov Processes -- 3.7 Connections Between Markov Processes and Martingales -- 4 The Period 1965-1980 -- 4.1 The Stochastic Integral -- 4.2 Markov Processes -- 4.3 General Theory of Processes -- 4.4 Inequalities of Martingales and Analysis -- 4.5 Martingale Problems -- 4.6 ``Stochastic Mechanics'' -- 4.7 Relations to Physics -- 5 After 1980 -- 5.1 The ``Malliavin Calculus'' -- 5.2 Stochastic Differential Geometry -- 5.3 Distributions and White Noise -- 5.4 Large Deviations -- 5.5 Noncommutative Probability -- 5.6 Omissions -- 9 Martingales in Japan -- 1 Before 1960: Itô's Stochastic Analysis -- 2 Japanese Contributions to Martingales from 1961 to 1970 -- 2.1 The Doob-Meyer Decomposition Theorem for Supermartingales -- 2.2 Stochastic Integrals for Square-Integrable Martingales and Semimartingales -- 2.3 Martingale Representation Theorems -- 3 Japanese Contributions to Martingales After 1971 -- 3.1 Fisk-Stratonovich Symmetric Stochastic Integrals. Itô's Circle Operation -- 3.2 Itô-Tanaka's Formula and Local Times -- 3.3 Problems Concerning Filtrations -- 10 My Encounters with Martingales -- 1 Studying at the University of Berlin Right After the War -- 2 Collecting Building Blocks for Martingale Theory -- 3 A Year in Illinois -- 4 Final Work Till 1964 -- *-20pt Part IV Modern Applications. 11 Martingales in the Study of Randomness -- 1 Introduction -- 2 Richard von Mises's Collectives -- 3 Abraham Wald's Clarification -- 4 Jean Ville's Martingales -- 5 The Status Quo of the 1950s -- 6 The Invention of the Algorithmic Definition of Randomness in the 1960s -- 6.1 Kolmogorov -- 6.2 Solomonoff -- 6.3 Chaitin -- 7 Martin-Löf's Definition of Randomness -- 8 Claus-Peter Schnorr's Computable Martingales -- 9 Leonid Levin's Semimeasures -- 10 Characterizing Martin-Löf Randomness Using Complexity -- 10.1 Leonid Levin in the Soviet Union -- 10.2 Monotone Complexity: Levin and Schnorr -- 10.3 Prefix Complexity -- 11 After the 1970s -- 12 Encounters with Martingales in Statistics and Stochastic Optimization -- 1 Introduction -- 2 Setting the Stage -- 2.1 Harold Hotelling -- 2.2 Abraham Wald -- 2.3 Herbert Robbins -- 3 Sequential Testing and Confidence Intervals -- 3.1 Wald's Seminal Work During the Second World War -- 3.2 Sequential Tests with Power 1 and Confidence Sequences -- 3.3 BHAT and Time-Sequential Survival Analysis -- 4 Martingales in Sequential Design of Experiments and Bandit Problems -- 5 Stochastic Approximation (SA) and Adaptive SA -- 6 Martingales and Biorhythms in Time Series -- 7 Martingales in Stochastic Optimization, 1987-2021 -- 7.1 Contextual Bandits in Reinforcement Learning and Personalization, Modified Gradient Boosting and SA in AI -- 7.2 Joint State and Parameter Estimation in Hidden Markov Models, with Uncertainty Quantification -- 8 Concluding Remarks -- 13 Martingales in Survival Analysis -- 1 Introduction -- 2 The Hazard Rate and a Martingale Estimator -- 3 Stochastic Integration and Statistical Estimation -- 4 Stopping Times, Unbiasedness and Independent Censoring -- 5 Martingale Central Limit Theorems -- 6 Two-Sample Tests for Counting Processes -- 7 The Copenhagen Environment. 8 From Kaplan-Meier to the Empirical Transition Matrix -- 9 Pustulosis Palmo-Plantaris and ps: [/EMC pdfmark [/Subtype /Span /ActualText (k) /StPNE pdfmark [/StBMC pdfmarkkps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark-Sample Tests -- 10 The Cox Model -- 11 The Monograph Statistical Models Based on Counting Processes -- 12 Limitations of Martingales -- 14 Encounters with Martingales in Stochastic Control -- 1 Introduction -- 2 Frequency Domain Methods for Control and Estimation -- 3 Time Domain Methods for Control and Estimation -- 4 Nonlinear Stochastic Control -- 5 Some Other Related Stochastic Optimization Problems -- 6 Appendix (by Laurent Mazliak): Martingale Problems and Stochastic Control of General Processes -- 6.1 Strong and Weak Solutions of Stochastic Differential Equations. Martingale Problems -- 6.2 General Formulation of a Control Problem -- *-20pt Part V Documents -- 15 Analysis or Probability? Eight Letters Between Børge Jessen and Paul Lévy -- 1 Introduction -- 2 Lévy to Jessen. Paris, 27 September 1934 -- 3 Lévy to Jessen. Paris, 4 April 1935 -- 4 Jessen to Lévy. Undated Draft, About 8 April 1935 -- 5 Lévy to Jessen. Hennequeville, 24 April 1935 -- 6 Lévy to Jessen. Paris, 3 May 1935 -- 7 Jessen to Lévy. Copenhagen, 11 August 1935 -- 8 Lévy to Jessen. S. Cristina, 23 August 1935 -- 9 Bohr and Jessen to Lévy. Copenhagen, 14 July 1947 -- 16 Counterexamples to Abstract Probability: Ten Letters by Jessen, Doob and Dieudonné -- 1 Introduction -- 2 Jessen to Doob, 11 May 1948 -- 3 Doob to Jessen, 17 May 1948 -- 4 Jessen to Doob, 29 May 1948 -- 5 Doob to Jessen, 4 June 1948 -- 6 Jessen to Dieudonné, 17 June 1948 -- 7 Dieudonné to Jessen, Nancy, 28 June 1948 -- 8 Jessen to Dieudonné, 13 September 1948 -- 9 Jessen to Doob, 13 September 1948 -- 10 Jessen to Doob, 17 May 1949 -- 11 Jessen to Doob, 23 June 1949. 17 Jean Ville Remembers Martingales -- 1 Introduction -- 2 Letter from Crépel to Ville, 22 August 1984 -- 3 Crépel's Interview of Ville, 27 August 1984 -- 3.1 Mathematics in France in the 1930s -- 3.2 Vienna and Karl Menger -- 3.3 Random Sequences and Martingales -- 3.4 Probability Back in France -- 3.5 Other Aspects of Probability -- 3.6 Economics -- 3.7 Computing at the University of Paris -- 4 Letter from Crépel to Ville, 21 January 1985 -- 5 Letter from Ville to Crépel, 2 February 1985 -- 5.1 First Note -- 5.2 Second Note -- 5.3 Third Note -- 18 Seven Letters from Paul Lévy to Maurice Fréchet -- 1 Introduction -- 19 Andrei Kolmogorov and Leonid Levin on Randomness -- 1 Introduction -- 2 Letter from Kolmogorov to Fréchet, 1939 -- 3 Abstracts of Three Talks by Kolmogorov, 1967-1974 -- 3.1 31 October 1967 -- 3.2 23 November 1971 -- 3.3 16 April 1974 -- 4 Three Letters from Levin to Kolmogorov 1970-1971 -- 4.1 Letter I -- 4.2 Letter II -- 4.3 Letter III -- Index. |
| Record Nr. | UNISA-996495169703316 |
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||