Vai al contenuto principale della pagina

Green Technologies for Industrial Waste Remediation



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Mathuriya Abhilasha Singh Visualizza persona
Titolo: Green Technologies for Industrial Waste Remediation Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing AG, , 2023
©2023
Edizione: 1st ed.
Descrizione fisica: 1 online resource (315 pages)
Altri autori: PanditSoumya  
SinghNeeraj Kumar  
Nota di contenuto: Intro -- Contents -- 1 Application of Microorganisms in Industrial Waste Treatment -- 1.1 Introduction -- 1.2 Need for the Treatment of Industrial Waste -- 1.3 Biological Approaches for Industrial Waste Treatment -- 1.3.1 Microorganisms in Industrial Waste Treatment -- 1.3.2 Various Methods by Which Microorganisms Can Treat Industrial Waste -- 1.3.3 Composting Process -- 1.4 Trickling Filter for the Treatment of Industrial Waste -- 1.5 Conclusions -- References -- 2 An Overview on Fungi and Nanomaterial-Based Technologies for the Treatment of Industrial Effluents -- 2.1 Waste and Waste Management -- 2.1.1 The Waste Hierarchy -- 2.1.2 Global Waste Generation and Handling Practices -- 2.2 Waste Treatment Methods -- 2.2.1 Physio-Chemical Method -- 2.2.2 Phytoremediation -- 2.3 Natural Attenuation -- 2.3.1 Fungi as a Bioremediation Agent -- 2.3.2 Limitations of Using Fungi as a Tool of Bioremediation -- 2.4 Nano-remediation -- 2.4.1 Specific Features Responsible for Mechanism of Nano-Remediation -- 2.4.2 Green Synthesize of Nanoparticles -- 2.4.3 Nanoparticles Associated with Enzymes -- 2.5 Conclusion -- 2.6 Future Concerns -- References -- 3 Hazardous Effects of Heavy Metals from Industrial Wastewaters and Their Remediation Through Green Technology -- 3.1 Introduction -- 3.2 Heavy Metal Sources in Wastewater -- 3.3 Various Conventional Method for Removal of Heavy -- 3.3.1 Adsorption -- 3.3.2 Ion-Exchange -- 3.3.3 Flocculation/coagulation -- 3.3.4 Precipitation -- 3.3.5 Electrochemical Treatment -- 3.4 Green Method for Removal and Recovery of Heavy Metals from Industrial Effluent -- 3.4.1 Membrane Filtration Process -- 3.4.2 Photo Catalysis -- 3.4.3 Electrocoagulation -- 3.4.4 Ozonation -- 3.4.5 Biological Treatment of Organic and Heavy Metals-Laden Water -- 3.5 Advancement in Green Technologies and Future Prospective -- 3.5.1 Hybrid Methods.
3.5.2 Nano Remediation -- 3.5.3 Other Emerging Simultaneous Removal Strategies -- 3.6 Conclusion -- References -- 4 Algal Photo Bioreactors: A Promising Technology for Wastewater Treatment -- 4.1 Introduction -- 4.2 Wastewater a Rich Source of Nutrients -- 4.3 Algae Cultivation Techniques -- 4.3.1 Based on Culturing Conditions -- 4.3.2 Based on Design of Reactors -- 4.4 Photo Bioreactors and Different Configurations -- 4.4.1 Vertical Plastic Bags -- 4.4.2 Tubular -- 4.4.3 Column -- 4.4.4 Flat Panel -- 4.4.5 Membrane -- 4.4.6 Stirred-Tank -- 4.4.7 Air-Lift -- 4.5 Photo Bioreactors Parts and Components -- 4.5.1 Culture Vessel-Bags, Tube, Column -- 4.5.2 Panel Wall Material -- 4.5.3 Light Source -- 4.5.4 Gas Spargers -- 4.5.5 Degassers -- 4.5.6 Stirrers and Mixers -- 4.5.7 Monitoring and Control Systems -- 4.6 Factors Influencing Algal Growth in Photo Bioreactors -- 4.6.1 Nutrient Concentration -- 4.6.2 Gas Levels -- 4.6.3 PH -- 4.6.4 Light and Cycle -- 4.6.5 Temperature -- 4.6.6 Genetic Modification -- 4.7 Algal Photo Bioreactors for Wastewater Treatment -- 4.8 Challenges in Photo Bioreactors -- 4.9 Conclusion and Future Scope -- References -- 5 Membrane Based Technologies for Industrial Waste Management -- 5.1 Introduction -- 5.2 Membrane Filtration -- 5.2.1 Procedures Utilizing Membrane Pressure -- 5.2.2 Non-Pressure Driven -- 5.2.3 Non-Pressure and Electrical Driven Process -- 5.2.4 Hybrid Membrane Processes -- 5.3 Applications to Industrial Wastewater Treatment -- 5.3.1 Pulp and Paper Industry -- 5.3.2 Beverage and Distillery Sector -- 5.3.3 Food Processing Industry -- 5.3.4 Metal Processing Industry -- 5.3.5 Dye and Textile Industry -- 5.4 Restriction -- 5.5 Future Perspectives -- 5.6 Summary -- References -- 6 Valorization of Agro-Industrial Wastes for Biorefinery Products -- 6.1 Introduction -- 6.2 Trends Followed in the Management of Agro-Waste.
6.3 Types and Sources of Agro-Industrial Waste -- 6.3.1 Fruit and Vegetable Processing Wastes (FVW) -- 6.3.2 Edible Oil Waste -- 6.3.3 Coffee Processing Waste (CW) -- 6.3.4 Kitchen Waste -- 6.3.5 Brewery Processing Waste -- 6.4 Biorefinery Concept and Management -- 6.5 Methodologies for Valorization of Agro-Industrial Waste -- 6.5.1 Pretreatment Methods of Agro Wastes -- 6.5.2 Treatment Methods of Agro Wastes -- 6.6 Agro-Industrial Waste and Valorized Products -- 6.6.1 Agro-Industrial Waste- Means of Biofuel -- 6.6.2 Agro-Industrial Waste-As Substrate for SSF -- 6.6.3 Agro-Industrial Waste Enzyme Production -- 6.6.4 Agro-Industrial Waste- Antibiotic Production -- 6.6.5 Agro-Industrial Waste- Phytochemical Production -- 6.6.6 Agro-Industrial Waste- Biomaterial Production -- 6.7 Agro-Industrial Waste-Biofertilizer Production -- 6.8 Future Perspectives of Valorized Agro-Industrial Waste -- 6.9 Conclusions -- References -- 7 A Critical Assessment of Processes and Products for Valorization of Agroforestry Industrial Wastes for Biorefinery -- 7.1 Introduction -- 7.2 Agro and Forestry Industrial Byproducts -- 7.3 Strategies of Process Design in Biorefinery Processes -- 7.4 Technical and Economic Assessment and Its Uncertainties -- 7.5 Biorefinery Product Selection and Its Uncertainties -- 7.6 Commercial Technologies -- 7.7 Conclusions -- References -- 8 Bioaccumulation and Detoxification of Metals Through Genetically Engineered Microorganism -- 8.1 Introduction -- 8.2 Heavy Metals -- 8.2.1 Effect of Heavy Metals on the Ecosystem -- 8.3 Microbial Bioremediation of Heavy Metals -- 8.4 Genetically Engineered Microorganisms (GEMs) for Enhanced Bioremediation -- 8.4.1 Factors Affecting the Capacity of Microbial Bioremediation -- 8.4.2 Mechanism -- 8.4.3 Heavy Metal Resistance by Microorganism -- 8.4.4 Pathway Construction and Alteration of the Intrinsic Genes.
8.4.5 Role of Extracellular Polymeric Substances (EPS) -- 8.4.6 Microbes as Nano-Factories of Metal -- 8.5 Conclusion -- References -- 9 Constructed Wetlands for Industrial Wastewater Remediation -- 9.1 Introduction -- 9.2 Constructed Wetlands (CWs) -- 9.3 Constructed Wetland Types -- 9.3.1 Free Water Surface (FWS) Constructed Wetlands -- 9.3.2 Vertical Flow (VF) Constructed Wetlands -- 9.3.3 Horizontal Flow (HF) Constructed Wetlands -- 9.3.4 Hybrid Constructed Wetlands (HCWs) -- 9.3.5 Floating Treatment Wetlands (FTW) -- 9.4 Contructed Wetland Substrate Selection and Role -- 9.5 Contructed Wetland Plant Selection and Role -- 9.6 Constructed Wetland Technology for Industrial Wastewater Treatment -- 9.7 Conclusions and Future Outlook -- References -- 10 Bioelectrochemical Treatment of Petrochemicals -- 10.1 Introduction -- 10.1.1 Principle of Bio Electrochemical System (BES) -- 10.2 Types of BES -- 10.2.1 Microbial Fuel Cell (MFC) -- 10.2.2 Microbial Electrolysis Cell (MEC) -- 10.2.3 Enzymatic Biofuel Cell (EFC) -- 10.3 Need and Functioning of Bio Electrochemical System -- 10.4 Oil Field and Petrochemical Wastewater Treatment -- 10.5 Removal of Toxic Elements -- 10.6 Microbial Electrochemical Technologies (MET) for Petrochemicals -- 10.7 Conclusion -- References -- 11 Biogenic Nanomaterials: Synthesis, Characterization and Its Potential in Dye Remediation -- 11.1 Introduction -- 11.2 Biogenic Nanomaterials -- 11.2.1 Some Commonly Used Nanomaterials -- 11.3 Synthesis of Biogenic Nanomaterials -- 11.3.1 Synthesis by Using Bacteria -- 11.3.2 Synthesis by Using Fungi -- 11.3.3 Synthesis by Using Algae -- 11.3.4 Synthesis by Using Plants -- 11.3.5 Synthesis of Biogenic Nanomaterials: Mechanism -- 11.4 Characterization of Biogenic Nanomaterials: Analytical Techniques -- 11.4.1 Analysis of Geometry -- 11.4.2 Analysis of Surface Morphology.
11.4.3 Analysis of Magnetic Properties -- 11.4.4 X-ray Diffraction Analysis -- 11.4.5 FTIR Analysis -- 11.5 Dye Removal: Current Status -- 11.6 Biogenic Nanomaterials in Dye Remediation: Approaches and Applications -- 11.6.1 Adsorption -- 11.6.2 Photocatalytic Degradation -- 11.6.3 Enzyme-Linked Processes -- 11.7 Challenges and Perspectives -- 11.8 Conclusion -- References -- 12 Biocatalytic Remediation of Industrial Pollutants -- 12.1 Introduction -- 12.2 Types of Industrial Pollutants -- 12.2.1 Organic Pollutants -- 12.2.2 Inorganic Pollutants -- 12.3 Biocatalytic Remediation -- 12.3.1 Remediation Using Microbial Cells -- 12.3.2 Remediation Using Microbial Enzymes -- 12.4 Immobilized Biocatalysts -- 12.4.1 Remediation Through Immobilization Technology -- 12.4.2 Remediation of Industrial Pollutants by Immobilized Biocatalysts -- 12.5 Integrated Bioreactor and Biocatalyst Approach -- 12.6 Current Challenges and Future Prospects -- 12.7 Conclusion -- References -- 13 Photocatalytic Treatment of Wastewater -- 13.1 Introduction to Photocatalytic Treatment of Wastewater -- 13.2 Types of Photocatalysts and Their Properties -- 13.3 Photocatalytic Reactor Design and Operation -- 13.4 Photocatalytic Degradation of Organic Pollutants -- 13.4.1 Industry-Wise Photocatalytic Degradation of Organic Pollutants -- 13.5 Photocatalytic Removal of Inorganic Pollutants -- 13.5.1 Industry-Wise Photocatalytic Degradation of Inorganic Pollutants -- 13.6 Factors Affecting Photocatalytic Degradation Efficiency -- 13.7 Integration of Photocatalysis with Other Treatment Processes -- 13.8 Cost Analysis of Photocatalytic Treatment -- 13.9 Conclusion -- References -- 14 Microbial Biofilm Reactor for Sustainable Wastewater Treatment -- 14.1 Introduction -- 14.2 Basic Features of Wastewater -- 14.3 Biofilms -- 14.4 Biofilm Development -- 14.5 Factors Affecting Biofilm Formation.
14.5.1 The Nature of the Substratum.
Titolo autorizzato: Green Technologies for Industrial Waste Remediation  Visualizza cluster
ISBN: 3-031-46858-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910768168303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Environmental Science and Engineering Series