top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Spectroscopy: Molecules to Materials : Proceedings of NCASMM 2018 / / edited by Dheeraj Kumar Singh, Sourav Das, Arnulf Materny
Advances in Spectroscopy: Molecules to Materials : Proceedings of NCASMM 2018 / / edited by Dheeraj Kumar Singh, Sourav Das, Arnulf Materny
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (449 pages)
Disciplina 535.84
Collana Springer Proceedings in Physics
Soggetto topico Spectroscopy
Microscopy
Mechanics
Mechanics, Applied
Mechatronics
Spectroscopy and Microscopy
Spectroscopy/Spectrometry
Solid Mechanics
ISBN 981-15-0202-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Excited State Dynamic of Fluorogenic Molecules -- Sum Frequency Generation Vibrational Spectroscopy: A Nonlinear Optical Tool to Probe the Polymer Interfaces -- Towards Fluorogenic and Chromogenic Sensing of Heavy Metal Ions in Aqueous Medium: A Mini-Review -- Quantum Cascade Laser Spectroscopy for Atmospheric Sensing and Biomedical Diagnostics -- Optical Signal Enhancement in LIBS Using Aluminum Nanoparticles on Brass Sample -- Spectroscopic Characterization of Metal-Polymer Interface for Electronic Applications -- Graphene, Its Analogues and Modern Science -- Study of Limonene Loaded Zein Nanoparticles for Sustainable Agriculture -- Effect of Magnetic Ordering on Phonon Raman Spectra in Magnetic Systems -- Strain Induced Changes in Vibrational Properties of Arsenene and Antimonene Monolayer -- Trapping Melamine with Pristine and Functionalized Graphene Quantum Dots: DFT and SERS Studies.
Record Nr. UNINA-9910350220703321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modern techniques of spectroscopy : basics, instrumentation, and applications / / Editors, Dheeraj Kumar Singh, Manik Pradhan and Arnulf Materny
Modern techniques of spectroscopy : basics, instrumentation, and applications / / Editors, Dheeraj Kumar Singh, Manik Pradhan and Arnulf Materny
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (663 pages) : illustrations
Disciplina 535.84
Collana Progress in Optical Science and Photonics
Soggetto topico Physical measurements
Measurement
Spectrum analysis
ISBN 981-336-084-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910484300103321
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modern techniques of spectroscopy : basics, instrumentation, and applications / / Editors, Dheeraj Kumar Singh, Manik Pradhan and Arnulf Materny
Modern techniques of spectroscopy : basics, instrumentation, and applications / / Editors, Dheeraj Kumar Singh, Manik Pradhan and Arnulf Materny
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (663 pages) : illustrations
Disciplina 535.84
Collana Progress in Optical Science and Photonics
Soggetto topico Physical measurements
Measurement
Spectrum analysis
ISBN 981-336-084-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466753803316
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Raman Spectroscopy : Advances and Applications
Raman Spectroscopy : Advances and Applications
Autore Singh Dheeraj Kumar
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer Singapore Pte. Limited, , 2024
Descrizione fisica 1 online resource (388 pages)
Altri autori (Persone) Kumar MishraAshish
MaternyArnulf
Collana Springer Series in Optical Sciences Series
ISBN 981-9717-03-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- Editors and Contributors -- 1 Saga and Developments of Raman Spectroscopy -- 1.1 From Birth to Discovery -- 1.1.1 Discovery of the Raman Effect -- 1.2 Development of Raman Spectroscopy -- 1.2.1 Surface Enhanced Raman Spectroscopy (SERS) -- 1.2.2 Surface Enhanced Hyper Raman Scattering (SEHRS) -- 1.2.3 Tip Enhanced Raman Spectroscopy (TERS) -- 1.2.4 Coherent Anti-Stokes Raman Spectroscopy (CARS) -- 1.2.5 Stimulated Raman Scattering (SRS) -- 1.2.6 Resonance Raman Spectroscopy (RRS) -- 1.2.7 Confocal Raman Spectroscopy (CRS) -- 1.3 Summary -- References -- 2 Resonant and Non-resonant Raman Spectroscopy -- 2.1 Introduction -- 2.2 Raman Scattering: Classical Picture -- 2.3 Raman Scattering: Quantum Picture -- 2.4 Resonant and Non-resonant Effect -- 2.4.1 Resonant Effect and First-Order Raman Scattering -- 2.4.2 Resonant/Double Resonant Effect and Second/Higher-Order Raman Scattering -- 2.5 Resonance Effect in Semiconducting Transition Metal Di Chalcogenides -- 2.5.1 Multi-phonon Raman Scattering -- 2.5.2 Back Scattering Forbidden and Infrared Active Phonons -- 2.5.3 Davydov Splitting -- 2.5.4 Electron-Phonon Coupling -- 2.6 Crossover Between Resonant and Non-resonant Conditions -- 2.6.1 Laser Excitation Energy Induced Crossover of Resonant and Non-resonant Conditions -- 2.6.2 Temperature Induced Crossover of Resonant and Non-resonant Conditions -- 2.7 Conclusion and Future Perspective -- References -- 3 Magnetic Field and Pressure-Dependent Raman Spectroscopy -- 3.1 Basic Principle -- 3.2 Instrumentation -- 3.2.1 Magnetic Field Dependent Raman Spectroscopy -- 3.2.2 Pressure Dependent Raman Spectroscopy -- 3.3 Application of the Techniques for Fundamental Science -- 3.3.1 Application of Magneto-Raman -- 3.3.2 Application of High-Pressure Raman -- 3.3.3 Magneto-Raman at High Pressure.
3.4 Conclusion and Future Prospects -- References -- 4 Optothermal Raman Spectroscopy for Thermal Transport Study -- 4.1 Introduction -- 4.2 Recent Advancements in Raman Technique -- 4.3 Thermal Transport Properties Using Different Techniques -- 4.3.1 Optothermal Raman Technique -- 4.3.2 Temperature Dependent Raman Study -- 4.3.3 Power Dependent Raman Study -- 4.3.4 Example of OTR Study in 2D Materials -- 4.3.5 Phonon Anharmonicity by Optothermal Raman Technique -- 4.4 Conclusions and Future Perspective -- References -- 5 Polarized Raman Spectroscopy -- 5.1 Introduction -- 5.2 Polarization of Light -- 5.3 Isotropic and Anisotropic Samples -- 5.4 Polarized Raman Spectroscopy -- 5.5 Experimental Set-Up: Polarized Raman Spectroscopy -- 5.6 Polarization Configurations -- 5.7 Depolarization Ratio -- 5.8 Applications -- 5.8.1 Materials Science and Crystallography -- 5.8.2 Molecular Symmetry and Structural Analysis -- 5.8.3 Optoelectronic and Photonic Devices -- 5.8.4 Pharmaceutical and Drug Development -- 5.8.5 Advanced Materials and Nanotechnology -- 5.9 Examples -- 5.9.1 Symmetry of Vibrational Modes in Isotropic Samples -- 5.9.2 Characterization of Anisotropic Samples -- 5.9.3 Study of Raman Non-coincidence Effect -- 5.9.4 Study of Thin Film Morphology -- 5.9.5 Study of Polymer Morphology -- 5.9.6 Detection of Diseased Tissues -- 5.9.7 Study of Crystal Orientation -- 5.10 Conclusion and Future Perspectives -- References -- 6 Optical Tweezers in Raman Spectroscopy -- 6.1 Introduction to Optical Tweezers -- 6.2 Principles of Optical Tweezers -- 6.3 Introduction to Raman Spectroscopy -- 6.4 Raman Tweezers: OTRS Coupled Setup -- 6.4.1 Instrumentation -- 6.5 Applications and Recent Advancements in Raman/SERS-Coupled Tweezers Setup -- 6.6 Limitations and Experimental Considerations in Raman/SERS Tweezers Measurements -- 6.7 Conclusion and Future Outlook.
References -- 7 Chirality Revealed by Raman Optical Activity: Principles, Applications, Recent Developments and Future Prospects -- 7.1 Introduction -- 7.1.1 Chirality and Its Relevance in Various Scientific Disciplines -- 7.1.2 Motivation for the Development of ROA Technique -- 7.2 History and Fundamentals of ROA -- 7.3 Basic Components of ROA Spectrometers -- 7.3.1 Laser Source -- 7.3.2 Sample Handling and Delivery Systems -- 7.3.3 Focusing and Optics -- 7.3.4 Polarization Control Elements -- 7.3.5 Detection Systems -- 7.3.6 Signal Processing Tools -- 7.4 Recent Applications of ROA Spectroscopy -- 7.5 Conclusion and Future Perspective -- References -- 8 Surface-Enhanced Raman Spectroscopy (SERS) -- 8.1 Introduction -- 8.2 Major Mechanisms Contributing to Surface-Enhanced Raman Scattering -- 8.2.1 Electromagnetic Enhancement -- 8.2.2 Charge Transfer -- 8.3 Surface Plasmon Polaritons at Plane Interfaces -- 8.3.1 Theoretical Background -- 8.3.2 Realization of Excitation of Surface Plasmon Polaritons -- 8.3.3 Experimental Setup -- 8.4 Basic Characterization -- 8.4.1 Identifying the Chemical-Enhancement Contribution to SERS Using a Kretschmann Arrangement -- 8.4.2 The Importance of the Chemical Enhancement Mechanism in SERS Using the Kretschmann Arrangement -- 8.5 Example: Detection and Quantification of Moxifloxacin Using SERS in a Kretschmann Arrangement -- 8.6 Conclusion -- References -- 9 Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS): Techniques, Applications, and Future Perspectives -- 9.1 Introduction -- 9.2 History of EC-SERS -- 9.3 Features of EC-SERS -- 9.3.1 Borrowing SERS -- 9.3.2 EC-SHINERS -- 9.3.3 EC-TERS -- 9.4 Applications of EC-SERS -- 9.4.1 EC-SERS for Sensing -- 9.4.2 Electrocatalysis -- 9.4.3 Electrodeposition -- 9.4.4 Corrosion Studies -- 9.5 Challenges and Future Perspectives -- 9.6 Conclusions -- References.
10 Surface-Enhanced Raman Excitation Spectroscopy: An Overview -- 10.1 Introduction -- 10.2 Brief Description of Instrumentation, and Sampling -- 10.2.1 Substrate and Hot-Spot -- 10.2.2 Effect of LSPR, Charge Transfer Resonance, and Molecular Electronic Resonance -- 10.3 Exemplification of Surface-Enhanced Raman Excitation Spectroscopy (or Excitation Profile) -- 10.4 Conclusion -- References -- 11 Tip-Enhanced Raman Spectroscopy -- 11.1 Introduction -- 11.1.1 Raman Spectroscopy: A Brief Overview -- 11.1.2 Evolution of TERS: Historical Development -- 11.2 Theory of Tip-Enhanced Raman Spectroscopy -- 11.2.1 Concepts of Optical Near-Field and Far-Field -- 11.2.2 Enhancement Mechanisms of TERS -- 11.3 Experimental Setup and Techniques -- 11.3.1 TERS Instrumentation: Components and Procedure -- 11.3.2 Tip Fabrication and Characterization -- 11.4 Applications of TERS -- 11.4.1 Chemical Reaction Monitoring -- 11.4.2 Low-Dimensional Materials -- 11.4.3 Biological and Life Sciences -- 11.5 TERS: A Promising Future Unveiled -- References -- 12 Hyper and Stimulated Raman Spectroscopy -- 12.1 Introduction -- 12.2 Theoretical Basis of Stimulated Raman Scattering -- 12.3 Time Resolved Stimulated Raman Spectroscopy -- 12.3.1 Femtosecond Stimulated Raman Spectroscopy (FSRS) -- 12.3.2 Ultrafast Raman Loss Spectroscopy (URLS) -- 12.3.3 Hyper-Raman Spectroscopy -- 12.4 Conclusion and Future Perspective -- References -- 13 Coherent Anti-Stokes Raman Spectroscopy (CARS) -- 13.1 Introduction -- 13.2 Fundamentals of Coherent Anti-Stokes Raman Scattering -- 13.2.1 Frequency-Resolved CARS -- 13.2.2 Time-Resolved CARS -- 13.3 Two-Beam fs/ps CARS Instrument -- 13.3.1 State-of-the-Art Capabilities -- 13.3.2 Limitations -- 13.4 Polarization-Sensitive CARS Imaging Spectrometer -- 13.4.1 In Situ Referencing of the Spectral Excitation Efficiency -- 13.4.2 CCARS.
13.4.3 CARS Probing the Invisible! -- 13.5 Ultrabroadband fs/ps CARS with In Situ Filamentation -- 13.5.1 Soft Pulse Compression Behind Thick Optical Windows -- 13.5.2 Ultrabroadband fs/ps CARS with In Situ Referencing -- 13.6 Summary and Conclusions -- References -- 14 Imaging Based Raman Spectroscopy -- 14.1 Introduction -- 14.2 Spontaneous Raman Imaging and Biological Applications -- 14.3 Imaging with Surface-Enhanced Raman Spectroscopy -- 14.4 Imaging with Tip-Enhanced Raman Scattering -- 14.5 Imaging with Carbon Nanotubes -- 14.6 Imaging with CARS -- 14.7 Conclusion and Future Outlook -- References.
Record Nr. UNINA-9910851982203321
Singh Dheeraj Kumar  
Singapore : , : Springer Singapore Pte. Limited, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui