top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Gallium oxide : technology, devices and applications / / edited by Stephen Pearton, Fan Ren, Michael Mastro
Gallium oxide : technology, devices and applications / / edited by Stephen Pearton, Fan Ren, Michael Mastro
Pubbl/distr/stampa Amsterdam, Netherlands : , : Elsevier, , [2018]
Descrizione fisica 1 online resource (481 pages)
Disciplina 621.38152
Collana Metal oxides series
Soggetto topico Gallium compounds
Oxides
ISBN 0-12-814522-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- Gallium Oxide: Technology, Devices and Applications -- Copyright -- Contents -- List of contributors -- Series editor's biography -- Editors biography -- Preface to the series -- Preface -- Part One: Growth technology of Ga2O3 -- Chapter 1: Progress in MOVPE growth of Ga2O3 -- 1.1. Introduction -- 1.2. Homoepitaxial deposition of β-Ga2O3 -- 1.3. Heteroepitaxial deposition of β-Ga2O3 -- 1.4. Heteroepitaxial deposition of -Ga2O3 -- References -- Chapter 2: MBE growth and characterization of gallium oxide -- 2.1. Introduction -- 2.2. MBE growth of Ga2O3 and materials characterization -- 2.2.1. Oxide MBE equipment considerations -- 2.2.2. Amorphous Ga2O3 for gate dielectrics -- 2.2.3. Heteroepitaxy of Ga2O3 -- 2.2.4. Homoepitaxy of Ga2O3 -- 2.2.4.1. Substrate selection -- 2.2.4.2. Substrate cleaning -- 2.2.4.3. MBE growth optimization -- Substrate temperature -- Ga and oxygen flux -- 2.2.5. Stabilizing metastable phases -- 2.2.5.1. Tin-assisted -Ga2O3 -- 2.2.5.2. Indium-assisted -Ga2O3 -- 2.3. Current status and future prospects -- 2.4. Summary -- Acknowledgments -- References -- Chapter 3: Properties of sputter-deposited gallium oxide -- 3.1. Introduction -- 3.2. Experimental -- 3.2.1. Film fabrication -- 3.2.2. Characterization -- 3.2.2.1. Rutherford backscattering spectroscopy (RBS) -- 3.2.2.2. X-ray photoelectron spectroscopy (XPS) -- 3.2.2.3. Grazing incidence X-ray diffraction (GIXRD) -- 3.2.2.4. UV-vis spectroscopy -- 3.2.2.5. Spectroscopic ellipsoemetry -- 3.2.2.6. Mechanical characterization -- 3.3. Results and discussion -- 3.3.1. Chemical composition -- 3.3.1.1. RBS -- 3.3.1.2. XPS -- 3.3.2. Crystal structure -- 3.3.3. Optical properties -- 3.3.3.1. Spectrophotometry -- 3.3.4. Mechanical properties -- 3.4. Summary and conclusions -- Acknowledgments -- References.
Chapter 4: Synthesis, optical characterization, and environmental applications of β-Ga2O3 nanowires -- 4.1. Introduction -- 4.2. Ambient controlled synthesis of β-Ga2O3 nanowires -- 4.3. Optical characterization of β-Ga2O3 nanowires -- 4.4. Photocatalytic property of β-Ga2O3 nanowires -- 4.5. Summary -- References -- Chapter 5: Growth, properties, and applications of β-Ga2O3 nanostructures -- 5.1. Introduction -- 5.2. Study of β-Ga2O3 nanostructures -- 5.2.1. β-Ga2O3 nanostructures using the CVD technique -- 5.2.2. β-Ga2O3 nanowires: Morphological and structural properties -- 5.2.3. Optical properties of β-Ga2O3 nanostructures -- 5.2.4. Application of β-Ga2O3 nanostructures -- 5.3. Functional nanowires based on β-Ga2O3 -- 5.3.1. Coaxial β-Ga2O3/GaN nanowires through ammonification of β-Ga2O3 nanowires -- 5.3.2. ZnGa2O4 nanowires through coaxial ZnO/β-Ga2O3 nanowires -- 5.3.3. β-Ga2O3 nanowires template mediated high-quality ultralong GaN nanowires -- 5.4. Conclusions and future perspective -- Acknowledgments -- References -- Part Two: Properties and Processing -- Chapter 6: Properties of (In,Ga)2O3 alloys -- 6.1. Introduction -- 6.2. Overview on crystal structures observed in (In,Ga)2O3 -- 6.3. Lattice parameters of bulk material -- 6.3.1. Rhombohedral (InxGa1-x)2O3 -- 6.3.2. Monoclinic β-(InxGa1-x)2O3 -- 6.3.3. Cubic (GaxIn1-x)2O3 -- 6.3.4. Hexagonal InGaO3 -- 6.4. Thin film growth -- 6.4.1. Growth of (In,Ga)2O3 thin films with lateral composition spread by PLD -- 6.4.2. Growth and phase formation of (In,Ga)2O3 thin films -- 6.5. Deep-UV absorption and band gap engineering -- 6.6. Phonon modes -- 6.7. Dielectric function and index of refraction -- 6.8. Schottky barrier diodes -- 6.9. Photodetectors -- 6.10. Summary and outlook -- References -- Further reading -- Chapter 7: Low-field and high-field transport in β-Ga2O3 -- 7.1. Introduction.
7.2. Electron-phonon interaction in β-Ga2O3 -- 7.2.1. Electron-LO phonon coupling -- 7.2.2. Electron-LO phonon-plasmon coupling -- 7.2.3. Short-range (nonpolar) electron-phonon coupling -- 7.3. Electron mobility in β-Ga2O3 -- 7.3.1. Bulk electron mobility -- 7.3.2. 2DEG mobility -- 7.4. Velocity-field curves in β-Ga2O3 -- 7.5. Summary -- Acknowledgments -- References -- Chapter 8: Electron paramagnetic resonance (EPR) from β-Ga2O3 crystals -- 8.1. Introduction -- 8.2. Crystal structure of β-Ga2O3 -- 8.3. Shallow donors and conduction electrons -- 8.4. Acceptors and self-trapped holes -- 8.4.1. Doubly ionized gallium vacancies -- 8.4.2. Neutral Mg acceptors -- 8.4.3. Self-trapped holes -- 8.5. Transition-metal and rare-earth ions -- 8.5.1. Cr3+ ions -- 8.5.2. Fe3+ ions -- 8.5.3. Mn2+ ions -- 8.5.4. Ti3+ ions -- 8.5.5. Er3+ ions -- 8.6. Oxygen vacancies -- Acknowledgments -- References -- Chapter 9: Hydrogen in Ga2O3 -- 9.1. Introduction -- 9.2. Hydrogen in the transparent conducting oxides ZnO, SnO2, and In2O3 -- 9.3. Hydrogen in β-Ga2O3 -- 9.3.1. Theory -- 9.3.2. Thermal stability of deuterium in Ga2O3 -- 9.3.3. Muon spin resonance -- 9.3.4. Vibrational properties of H in Ga2O3 -- 9.3.4.1. Vibrational spectroscopy -- 9.3.4.2. Evidence for a ``hidden hydrogen´´ species -- 9.3.4.3. Theory of defect structures and their vibrational properties -- 9.3.4.4. Additional IR lines -- 9.4. Conclusion -- Acknowlegments -- References -- Chapter 10: Ohmic contacts to gallium oxide -- 10.1 Introduction -- 10.2 Ohmic contacts and contact resistance -- 10.3 Ohmic contacts to gallium oxide -- 10.4 Development of Ohmic contacts for Ga2O3 microelectronics -- 10.5 Research opportunities for Ohmic contacts to Ga2O3 -- Acknowledgment -- References -- Chapter 11: Schottky contacts to β-Ga2O3 -- Chapter Outline -- 11.1. Introduction.
11.2. Physics of Schottky contacts and SBH measurements -- 11.2.1. Physics of Schottky contacts -- 11.2.2. Shottky Barrier Height measurements -- 11.2.2.1. phiB calculation from I-V measurements -- 11.2.2.2. phiB calculation from I-V-T measurements (Richardson plot) -- 11.2.2.3. phiB calculation from C-V measurements -- 11.2.2.4. phiB calculation from IPE measurements -- 11.3. Properties of Ga2O3 for SBDs -- 11.4. Schottky contacts on β-Ga2O3: Materials and processing -- 11.5. Defects relevant to β-Ga2O3 Schottky contacts -- 11.5.1. Point defects and impurities -- 11.5.2. Extended crystallographic defects -- 11.5.3. Defect states in the band gap -- 11.6. Nonideal and inhomogeneous Schottky barriers -- 11.7. β-Ga2O3 Schottky devices -- 11.7.1. SBDs as rectifiers -- 11.7.2. Metal-semiconductor field-effect transistors -- 11.8. Summary -- Acknowledgments -- References -- Chapter 12: Dry etching of Ga2O3 -- 12.1. Introduction -- 12.2. Dry etching -- 12.2.1. Mechanisms of dry etching -- 12.3. Dry etching techniques -- 12.4. Etch results for Ga2O3 -- 12.4.1. Etch rates -- 12.4.2. Damage induced by dry etching -- 12.5. Summary -- Acknowledgments -- References -- Chapter 13: Band alignments of dielectrics on (-201) β-Ga2O3 -- 13.1. Introduction -- 13.2. Methods -- 13.2.1. Determination of bandgap -- 13.2.2. Determination of band offset -- 13.3. Band offsets -- 13.3.1. Aluminum oxide -- 13.3.2. Lanthanum aluminate -- 13.3.3. SiO2 and HfSiO4 -- 13.3.4. Indium tin oxide -- 13.3.5. Aluminum zinc oxide (AZO) -- 13.4. Conclusion -- References -- Chapter 14: Radiation damage in Ga2O3 -- 14.1. Introduction -- 14.2. Radiation damage in wide bandgap semiconductors -- 14.3. Properties of Ga2O3 -- 14.4. Radiation damage effects in Ga2O3 -- 14.5. Summary and conclusion -- Acknowledgments -- References -- Part Three: Applications -- Chapter 15: Ga2O3 nanobelt devices.
15.1. Introduction -- 15.1.1. Bottom-up methods -- 15.1.2. Top-down methods -- 15.2. β-Ga2O3-based optoelectronic nanodevice -- 15.2.1. Introduction of β-Ga2O3-based optoelectronic nanodevice -- 15.2.2. Development of β-Ga2O3-based photodetectors -- 15.2.2.1. Photoconductive detectors -- 15.2.2.2. Metal-semiconductor-metal (MSM) structure -- 15.2.2.3. Photovoltaic structure -- 15.3. β-Ga2O3-based nanoelectronic devices -- 15.3.1. Introduction of β-Ga2O3 nanobelt-based transistors -- 15.3.2. Development of β-Ga2O3 nanobelt-based transistors -- 15.3.2.1. Back-gated FETs -- 15.3.2.2. Top-gated FETs -- 15.3.2.3. Heterostructure MISFETs -- 15.4. Summary -- References -- Chapter 16: Advances in Ga2O3 solar-blind UV photodetectors -- 16.1. Introduction -- 16.1.1. The UV spectrum -- 16.1.2. Applications: UV spectrum -- 16.1.3. Ga2O3-Background -- 16.2. Figures of merit for photodetectors -- 16.2.1. Quantum efficiency and spectral responsivity -- 16.2.2. Bandwidth, rise/fall times, and persistent photoconductivity -- 16.2.3. Noise equivalent power and specific detectivity -- 16.2.4. UV-to-visible rejection ratio -- 16.2.5. Linearity -- 16.3. β-Ga2O3 UV photodetectors: Types, operational principles, and status -- 16.3.1. Metal-semiconductor-metal photodetectors -- 16.3.2. Schottky photodetectors -- 16.4. Gain mechanism and barrier height calculation -- 16.5. Comparison with AlGaN deep-UV photodetectors -- 16.6. Design consideration, possible geometries, and arrays of detectors for deep UV detection -- 16.7. Summary, conclusion/future work -- References -- Chapter 17: Power MOSFETs and diodes -- 17.1. Introduction -- 17.2. Properties -- 17.3. Schottky diodes -- 17.4. Power MOSFETs -- 17.5. Application space and competing technologies -- 17.6. Future -- References -- Chapter 18: Ga2O3-photoassisted decomposition of insecticides -- 18.1. Introduction.
18.2. Photochemical and photocatalytic degradation reactions.
Record Nr. UNINA-9910583355203321
Amsterdam, Netherlands : , : Elsevier, , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
III-V compound semiconductors : integration with silicon-based microelectronics / / edited by Tingkai Li, Michael Mastro, Armin Dadgar
III-V compound semiconductors : integration with silicon-based microelectronics / / edited by Tingkai Li, Michael Mastro, Armin Dadgar
Edizione [First edition.]
Pubbl/distr/stampa Boca Raton, : CRC Press, 2010
Descrizione fisica 1 online resource (588 p.)
Disciplina 621.3815/2
Altri autori (Persone) LiTingkai
MastroMichael A. <1975->
DadgarArmin
Soggetto topico Compound semiconductors
Electronics
ISBN 0-429-19162-6
1-4398-1523-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Contents; Preface; Contributors; Part I. Technical Fundamentals and Challenges; Chapter 1. Fundamentals and the Future of Semiconductor Device Technology; Chapter 2. Challenge of III-V Materials Integration with Si Microelectronics; Chapter 3. III-Nitrides on Si Substrates; Chapter 4. New Technology Approaches; Chapter 5. Group III-A Nitrides on Si: Stress and Microstructural Evolution; Chapter 6. Direct Growth of III-V Devices on Silicon; Chapter 7. Optoelectronic Devices Integrated on Si; Chapter 8. Reliability of III-V Electronic Devices
Chapter 9. In Situ Curvature Measurements, Strains ,and Stresses in the Case of Large Wafer Bending and Multilayer SystemsChapter 10. X-Ray Characterization of Group III-Nitrides; Chapter 11. Luminescence in GaN; Chapter 12. GaN-Based Optical Devices on Silicon; Chapter 13. Conventional III-V Materials and Devices on Silicon; Chapter 14. III-V Solar Cells on Silicon; Back cover
Record Nr. UNINA-9910823564503321
Boca Raton, : CRC Press, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui