top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Transient analysis of power systems : solution techniques, tools, and applications / / Dr. Juan A. Martinez-Velasco
Transient analysis of power systems : solution techniques, tools, and applications / / Dr. Juan A. Martinez-Velasco
Autore Martinez-Velasco Juan A.
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom : , : John Wiley & Sons, Inc., , 2014
Descrizione fisica 1 online resource (648 p.)
Disciplina 621.319/21
Collana Wiley - IEEE
Soggetto topico Electric power system stability
Transients (Electricity) - Mathematical models
ISBN 1-118-69417-1
1-118-69419-8
1-118-69418-X
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xv -- About the Editor xvii -- List of Contributors xix -- 1 Introduction to Electromagnetic Transient Analysis of Power Systems 1 /Juan A. Martinez-Velasco -- 1.1 Overview 1 -- 1.2 Scope of the Book 4 -- References 6 -- 2 Solution Techniques for Electromagnetic Transients in Power Systems 9 /Jean Mahseredjian, Ilhan Kocar and Ulas Karaagac -- 2.1 Introduction 9 -- 2.2 Application Field for the Computation of Electromagnetic Transients 10 -- 2.3 The Main Modules 11 -- 2.4 Graphical User Interface 11 -- 2.5 Formulation of Network Equations for Steady-State and Time-Domain Solutions 12 -- 2.5.1 Nodal Analysis and Modified-Augmented-Nodal-Analysis 13 -- 2.5.2 State-Space Analysis 20 -- 2.5.3 Hybrid Analysis 21 -- 2.5.4 State-Space Groups and MANA 25 -- 2.5.5 Integration Time-Step 27 -- 2.6 Control Systems 28 -- 2.7 Multiphase Load-Flow Solution and Initialization 29 -- 2.7.1 Load-Flow Constraints 31 -- 2.7.2 Initialization of Load-Flow Equations 33 -- 2.7.3 Initialization from Steady-State Solution 33 -- 2.8 Implementation 34 -- 2.9 Conclusions 36 -- References 36 -- 3 Frequency Domain Aspects of Electromagnetic Transient Analysis of Power Systems 39 /Jos'e L. Naredo, Jean Mahseredjian, Ilhan Kocar, Jos'e A. Guti'errez-Robles and Juan A. Martinez-Velasco -- 3.1 Introduction 39 -- 3.2 Frequency Domain Basics 40 -- 3.2.1 Phasors and FD Representation of Signals 40 -- 3.2.2 Fourier Series 43 -- 3.2.3 Fourier Transform 46 -- 3.3 Discrete-Time Frequency Analysis 48 -- 3.3.1 Aliasing Effect 50 -- 3.3.2 Sampling Theorem 51 -- 3.3.3 Conservation of Information and the DFT 53 -- 3.3.4 Fast Fourier Transform 54 -- 3.4 Frequency-Domain Transient Analysis 56 -- 3.4.1 Fourier Transforms and Transients 56 -- 3.4.2 Fourier and Laplace Transforms 62 -- 3.4.3 The Numerical Laplace Transform 63 -- 3.4.4 Application Examples with the NLT 65 -- 3.4.5 Brief History of NLT Development 65 -- 3.5 Multirate Transient Analysis 66 -- 3.6 Conclusions 69 -- Acknowledgement 70 -- References 70.
4 Real-Time Simulation Technologies in Engineering 72 /Christian Dufour and Jean B'elanger -- 4.1 Introduction 72 -- 4.2 Model-Based Design and Real-Time Simulation 73 -- 4.3 General Considerations about Real-Time Simulation 74 -- 4.3.1 The Constraint of Real-Time 74 -- 4.3.2 Stiffness Issues 75 -- 4.3.3 Simulator Bandwidth Considerations 75 -- 4.3.4 Simulation Bandwidth vs. Applications 75 -- 4.3.5 Achieving Very Low Latency for HIL Application 76 -- 4.3.6 Effective Parallel Processing for Fast EMT Simulation 77 -- 4.3.7 FPGA-Based Multirate Simulators 79 -- 4.3.8 Advanced Parallel Solvers without Artificial Delays or Stublines: Application to Active Distribution Networks 79 -- 4.3.9 The Need for Iterations in Real-Time 80 -- 4.4 Phasor-Mode Real-Time Simulation 82 -- 4.5 Modern Real-Time Simulator Requirements 82 -- 4.5.1 Simulator I/O Requirements 83 -- 4.6 Rapid Control Prototyping and Hardware-in-the-Loop Testing 85 -- 4.7 Power Grid Real-Time Simulation Applications 85 -- 4.7.1 Statistical Protection System Study 85 -- 4.7.2 Monte Carlo Tests for Power Grid Switching Surge System Studies 87 -- 4.7.3 Modular Multilevel Converter in HVDC Applications 88 -- 4.7.4 High-End Super-Large Power Grid Simulations 89 -- 4.8 Motor Drive and FPGA-Based Real-Time Simulation Applications 90 -- 4.8.1 Industrial Motor Drive Design and Testing Using CPU Models 90 -- 4.8.2 FPGA Modelling of SRM and PMSM Motor Drives 91 -- 4.9 Educational System: RPC-Based Study of DFIM Wind Turbine 94 -- 4.10 Mechatronic Real-Time Simulation Applications 95 -- 4.10.1 Aircraft Flight Training Simulator 95 -- 4.10.2 Aircraft Flight Parameter Identification 95 -- 4.10.3 International Space Station Robotic Arm Testing 95 -- 4.11 Conclusion 97 -- References 97 -- 5 Calculation of Power System Overvoltages 100 /Juan A. Martinez-Velasco and Francisco Gonz'alez-Molina -- 5.1 Introduction 100 -- 5.2 Power System Overvoltages 101 -- 5.2.1 Temporary Overvoltages 101 -- 5.2.2 Slow-Front Overvoltages 102 -- 5.2.3 Fast-Front Overvoltages 102.
5.2.4 Very-Fast-Front Overvoltages 103 -- 5.3 Temporary Overvoltages 103 -- 5.3.1 Introduction 103 -- 5.3.2 Modelling Guidelines for Temporary Overvoltages 103 -- 5.3.3 Faults to Grounds 104 -- 5.3.4 Load Rejection 110 -- 5.3.5 Harmonic Resonance 115 -- 5.3.6 Energization of Unloaded Transformers 120 -- 5.3.7 Ferroresonance 125 -- 5.3.8 Conclusions 133 -- 5.4 Switching Overvoltages 135 -- 5.4.1 Introduction 135 -- 5.4.2 Modelling Guidelines 135 -- 5.4.3 Switching Overvoltages 139 -- 5.4.4 Case Studies 149 -- 5.4.5 Validation 154 -- 5.5 Lightning Overvoltages 154 -- 5.5.1 Introduction 154 -- 5.5.2 Modelling Guidelines 155 -- 5.5.3 Case Studies 163 -- 5.5.4 Validation 172 -- 5.6 Very Fast Transient Overvoltages in Gas Insulated Substations 174 -- 5.6.1 Introduction 174 -- 5.6.2 Origin of VFTO in GIS 174 -- 5.6.3 Propagation of VFTs in GISs 176 -- 5.6.4 Modelling Guidelines 180 -- 5.6.5 Case Study 9: VFT in a 765 kV GIS 182 -- 5.6.6 Statistical Calculation 183 -- 5.6.7 Validation 185 -- 5.7 Conclusions 187 -- Acknowledgement 187 -- References 187 -- 6 Analysis of FACTS Controllers and their Transient Modelling Techniques 195 /Kalyan K. Sen -- 6.1 Introduction 195 -- 6.3 Modelling Guidelines 206 -- 6.3.1 Representation of a Power System 206 -- 6.3.2 Representation of System Control 206 -- 6.3.3 Representation of a Controlled Switch 209 -- 6.3.4 Simulation Errors and Control 210 -- 6.4 Modelling of FACTS Controllers 210 -- 6.4.1 Simulation of an Independent PFC in a Single Line Application 212 -- 6.4.2 Simulation of a Voltage Regulating Transformer 212 -- 6.4.3 Simulation of a Phase Angle Regulator 214 -- 6.4.4 Simulation of a Unified Power Flow Controller 215 -- 6.5 Simulation Results of a UPFC 230 -- 6.6 Simulation Results of an ST 238 -- 6.7 Conclusion 245 -- Acknowledgement 245 -- References 245 -- 7 Applications of Power Electronic Devices in Distribution Systems 248 /Arindam Ghosh and Farhad Shahnia -- 7.1 Introduction 248 -- 7.2 Modelling of Converter and Filter Structures for CPDs 250.
7.2.1 Three-Phase Converter Structures 250 -- 7.2.2 Filter Structures 251 -- 7.2.3 Dynamic Simulation of CPDs 252 -- 7.3 Distribution Static Compensator (DSTATCOM) 253 -- 7.3.1 Current Control Using DSTATCOM 253 -- 7.3.2 Voltage Control Using DSTATCOM 256 -- 7.4 Dynamic Voltage Restorer (DVR) 258 -- 7.5 Unified Power Quality Conditioner (UPQC) 263 -- 7.6 Voltage Balancing Using DSTATCOM and DVR 267 -- 7.7 Excess Power Circulation Using CPDs 271 -- 7.7.1 Current-Controlled DSTATCOM Application 271 -- 7.7.2 Voltage-Controlled DSTATCOM Application 272 -- 7.7.3 UPQC Application 276 -- 7.8 Conclusions 278 -- References 278 -- 8 Modelling of Electronically Interfaced DER Systems for Transient Analysis 280 /Amirnaser Yazdani and Omid Alizadeh -- 8.1 Introduction 280 -- 8.2 Generic Electronically Interfaced DER System 281 -- 8.3 Realization of Different DER Systems 283 -- 8.3.1 PV Energy Systems 283 -- 8.3.2 Fuel-Cell Systems 284 -- 8.3.3 Battery Energy Storage Systems 284 -- 8.3.4 Supercapacitor Energy Storage System 285 -- 8.3.5 Superconducting Magnetic Energy Storage System 285 -- 8.3.6 Wind Energy Systems 286 -- 8.3.7 Flywheel Energy Storage Systems 287 -- 8.4 Transient Analysis of Electronically Interfaced DER Systems 287 -- 8.5 Examples 288 -- 8.5.1 Example 1: Single-Stage PV Energy System 288 -- 8.5.2 Example 2: Direct-Drive Variable-Speed Wind Energy System 298 -- 8.6 Conclusion 315 -- References 315 -- 9 Simulation of Transients for VSC-HVDC Transmission Systems Based on Modular Multilevel Converters 317 /Hani Saad, S'ebastien Denneti`ere, Jean Mahseredjian, Tarek Ould-Bachir and Jean-Pierre David -- 9.1 Introduction 317 -- 9.2 MMC Topology 318 -- 9.3 MMC Models 320 -- 9.3.1 Model 1 - Full Detailed 320 -- 9.3.2 Model 2 - Detailed Equivalent 321 -- 9.3.3 Model 3 - Switching Function of MMC Arm 322 -- 9.3.4 Model 4 - AVM Based on Power Frequency 325 -- 9.4 Control System 327 -- 9.4.1 Operation Principle 327 -- 9.4.2 Upper-Level Control 328 -- 9.4.3 Lower-Level Control 333.
9.4.4 Control Structure Requirement Depending on MMC Model Type 336 -- 9.5 Model Comparisons 336 -- 9.5.1 Step Change on Active Power Reference 337 -- 9.5.2 Three-Phase AC Fault 337 -- 9.5.3 Influence of MMC Levels 338 -- 9.5.4 Pole-to-Pole DC Fault 338 -- 9.5.5 Startup Sequence 340 -- 9.5.6 Computational Performance 340 -- 9.6 Real-Time Simulation of MMC Using CPU and FPGA 342 -- 9.6.1 Relation between Sampling Time and N 344 -- 9.6.2 Optimization of Model 2 for Real-Time Simulation 345 -- 9.6.3 Real-Time Simulation Setup 346 -- 9.6.4 CPU-Based Model 347 -- 9.6.5 FPGA-Based Model 350 -- 9.7 Conclusions 356 -- References 357 -- 10 Dynamic Average Modelling of Rectifier Loads and AC-DC Converters for Power System Applications 360 /Sina Chiniforoosh, Juri Jatskevich, Hamid Atighechi and Juan A. Martinez-Velasco -- 10.1 Introduction 360 -- 10.2 Front-End Diode Rectifier System Configurations 361 -- 10.3 Detailed Analysis and Modes of Operation 365 -- 10.4 Dynamic Average Modelling 368 -- 10.4.1 Selected Dynamic AVMs 370 -- 10.4.2 Computer Implementation 372 -- 10.5 Verification and Comparison of the AVMs 372 -- 10.5.1 Steady-State Characteristics 372 -- 10.5.2 Model Dynamic Order and Eigenvalue Analysis 376 -- 10.5.3 Dynamic Performance Under Balanced and Unbalanced Conditions 377 -- 10.5.4 Input Sequence Impedances under Unbalanced Conditions 382 -- 10.5.5 Small-Signal Input/Output Impedances 383 -- 10.6 Generalization to High-Pulse-Count Converters 386 -- 10.6.1 Detailed Analysis 387 -- 10.6.2 Dynamic Average Modelling 388 -- 10.7 Generalization to PWM AC-DC Converters 391 -- 10.7.1 PWM Voltage-Source Converters 391 -- 10.7.2 Dynamic Average-Value Modelling of PWM Voltage-Source Converters 392 -- 10.8 Conclusions 394 -- Appendix 394 -- References 395 -- 11 Protection Systems 398 /Juan A. Martinez-Velasco -- 11.1 Introduction 398 -- 11.2 Modelling Guidelines for Power System Components 400 -- 11.2.1 Line Models 400 -- 11.2.2 Insulated Cables 401 -- 11.2.3 Source Models 401.
11.2.4 Transformer Models 401 -- 11.2.5 Circuit Breaker Models 403 -- 11.3 Models of Instrument Transformers 403 -- 11.3.1 Introduction 403 -- 11.3.2 Current Transformers 404 -- 11.3.3 Rogowski Coils 408 -- 11.3.4 Coupling Capacitor Voltage Transformers 410 -- 11.3.5 Voltage Transformers 412 -- 11.4 Relay Modelling 412 -- 11.4.1 Introduction 412 -- 11.4.2 Classification of Relay Models 412 -- 11.4.3 Relay Models 413 -- 11.5 Implementation of Relay Models 418 -- 11.5.1 Introduction 418 -- 11.5.2 Sources of Information for Building Relay Models 419 -- 11.5.3 Software Tools 420 -- 11.5.4 Implementation of Relay Models 421 -- 11.5.5 Interfacing Relay Models to Recorded Data 422 -- 11.5.6 Applications of Relay Models 423 -- 11.5.7 Limitations of Relay Models 424 -- 11.6 Validation of Relay Models 424 -- 11.6.1 Validation Procedures 424 -- 11.6.2 Relay Model Testing Procedures 425 -- 11.6.3 Accuracy Assessment 426 -- 11.6.4 Relay Testing Facilities 426 -- 11.7 Case Studies 427 -- 11.7.1 Introduction 427 -- 11.7.2 Case Study 1: Simulation of an Electromechanical Distance Relay 428 -- 11.7.3 Case Study 2: Simulation of a Numerical Distance Relay 430 -- 11.8 Protection of Distribution Systems 450 -- 11.8.1 Introduction 450 -- 11.8.2 Protection of Distribution Systems with Distributed Generation 451 -- 11.8.3 Modelling of Distribution Feeder Protective Devices 451 -- 11.8.4 Protection of the Interconnection of Distributed Generators 460 -- 11.8.5 Case Study 3 460 -- 11.8.6 Case Study 4 465 -- 11.9 Conclusions 471 -- Acknowledgement 475 -- References 476 -- 12 Time-Domain Analysis of the Smart Grid Technologies: Possibilities and Challenges 481 /Francisco de Le'on, Reynaldo Salcedo, Xuanchang Ran and Juan A. Martinez-Velasco -- 12.1 Introduction 481 -- 12.2 Distribution Systems 482 -- 12.2.1 Radial Distribution Systems 483 -- 12.2.2 Networked Distribution Systems 484 -- 12.3 Restoration and Reconfiguration of the Smart Grid 487 -- 12.3.1 Introduction 487 -- 12.3.2 Heavily Meshed Networked Distribution Systems 487.
12.4 Integration of Distributed Generation 498 -- 12.4.1 Scope 498 -- 12.4.2 Radial Distribution Systems 499 -- 12.4.3 Heavily Meshed Networked Distribution Systems 503 -- 12.5 Overvoltages in Distribution Networks 515 -- 12.5.1 Introduction 515 -- 12.5.2 Ferroresonant Overvoltages 516 -- 12.5.3 Long-Duration Overvoltages due to Backfeeding 519 -- 12.6 Development of Data Translators for Interfacing Power-Flow Programs with EMTP-Type Programs 529 -- 12.6.1 Introduction 529 -- 12.6.2 Power-Flow to EMTP-RV Translator 530 -- 12.6.3 Example of the Translation of a Transmission Line 533 -- 12.6.4 Challenges of Development 533 -- 12.6.5 Model Validation 535 -- 12.6.6 Recommendations 542 -- Acknowledgement 546 -- References 546 -- 13 Interfacing Methods for Electromagnetic Transient Simulation: New Possibilities for Analysis and Design 552 /Shaahin Filizadeh -- 13.1 Introduction 552 -- 13.2 Need for Interfacing 553 -- 13.3 Interfacing Templates 554 -- 13.3.1 Static Interfacing 554 -- 13.3.2 Dynamic Interfacing and Memory Management 555 -- 13.3.3 Wrapper Interfaces 555 -- 13.4 Interfacing Implementation Options: External vs Internal Interfaces 555 -- 13.4.1 External Interfaces 556 -- 13.4.2 Internal Interfaces 556 -- 13.5 Multiple Interfacing 556 -- 13.5.1 Core-Type Interfacing 557 -- 13.5.2 Chain-Type Interfacing 557 -- 13.5.3 Loop Interfacing 558 -- 13.6 Examples of Interfacing 558 -- 13.6.1 Interfacing to Matlab/Simulink 558 -- 13.6.2 Wrapper Interfacing: Run-Controllers and Multiple-Runs 560 -- 13.7 Design Process Using EMT Simulation Tools 560 -- 13.7.1 Parameter Selection Techniques 561 -- 13.7.2 Uncertainty Analysis 563 -- 13.8 Conclusions 566 -- References 566 -- AnnexA: Techniques and Computer Codes for Rational Modelling of Frequency-Dependent Components and Subnetworks 568 /Bjorn Gustavsen -- A.1 Introduction 568 -- A.2 Rational Functions 569 -- A.3 Time-Domain Simulation 569 -- A.4 Fitting Techniques 569 -- A.4.1 Polynomial Fitting 569 -- A.4.2 Bode's Asymptotic Fitting 570.
A.4.3 Vector Fitting 570 -- A.5 Passivity 571 -- A.6 Matrix Fitting Toolbox 572 -- A.6.1 General 572 -- A.6.2 Overview 572 -- A.7 Example A.1: Electrical Circuit 573 -- A.8 Example 6.2: High-Frequency Transformer Modelling 575 -- A.8.1 Measurement 575 -- A.8.2 Rational Approximation 575 -- A.8.3 Passivity Enforcement 575 -- A.8.4 Time-Domain Simulation 576 -- A.8.5 Comparison with Time-Domain Measurement 577 -- References 579 -- AnnexB: Dynamic System Equivalents 581 /Udaya D. Annakkage -- B.1 Introduction 581 -- B.2 High-Frequency Equivalents 582 -- B.2.1 Introduction 582 -- B.2.2 Frequency-Dependent Network Equivalent (FDNE) 582 -- B.2.3 Examples of High-Frequency FDNE 583 -- B.2.4 Two-Layer Network Equivalent (TLNE) 586 -- B.2.5 Modified Two-Layer Network Equivalent 592 -- B.2.6 Other Methods 594 -- B.2.7 Numerical Issues 594 -- B.3 Low-Frequency Equivalents 595 -- B.3.1 Introduction 595 -- B.3.2 Modal Methods 596 -- B.3.3 Coherency Methods 596 -- B.3.4 Measurement or Simulation-Based Methods 597 -- B.4 Wideband Equivalents 597 -- B.5 Conclusions 597 -- References 598 -- Index 601.
Record Nr. UNINA-9910140495203321
Martinez-Velasco Juan A.  
Chichester, West Sussex, United Kingdom : , : John Wiley & Sons, Inc., , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transient analysis of power systems : solution techniques, tools, and applications / / Dr. Juan A. Martinez-Velasco
Transient analysis of power systems : solution techniques, tools, and applications / / Dr. Juan A. Martinez-Velasco
Autore Martinez-Velasco Juan A.
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom : , : John Wiley & Sons, Inc., , 2014
Descrizione fisica 1 online resource (648 p.)
Disciplina 621.319/21
Collana Wiley - IEEE
Soggetto topico Electric power system stability
Transients (Electricity) - Mathematical models
ISBN 1-118-69417-1
1-118-69419-8
1-118-69418-X
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xv -- About the Editor xvii -- List of Contributors xix -- 1 Introduction to Electromagnetic Transient Analysis of Power Systems 1 /Juan A. Martinez-Velasco -- 1.1 Overview 1 -- 1.2 Scope of the Book 4 -- References 6 -- 2 Solution Techniques for Electromagnetic Transients in Power Systems 9 /Jean Mahseredjian, Ilhan Kocar and Ulas Karaagac -- 2.1 Introduction 9 -- 2.2 Application Field for the Computation of Electromagnetic Transients 10 -- 2.3 The Main Modules 11 -- 2.4 Graphical User Interface 11 -- 2.5 Formulation of Network Equations for Steady-State and Time-Domain Solutions 12 -- 2.5.1 Nodal Analysis and Modified-Augmented-Nodal-Analysis 13 -- 2.5.2 State-Space Analysis 20 -- 2.5.3 Hybrid Analysis 21 -- 2.5.4 State-Space Groups and MANA 25 -- 2.5.5 Integration Time-Step 27 -- 2.6 Control Systems 28 -- 2.7 Multiphase Load-Flow Solution and Initialization 29 -- 2.7.1 Load-Flow Constraints 31 -- 2.7.2 Initialization of Load-Flow Equations 33 -- 2.7.3 Initialization from Steady-State Solution 33 -- 2.8 Implementation 34 -- 2.9 Conclusions 36 -- References 36 -- 3 Frequency Domain Aspects of Electromagnetic Transient Analysis of Power Systems 39 /Jos'e L. Naredo, Jean Mahseredjian, Ilhan Kocar, Jos'e A. Guti'errez-Robles and Juan A. Martinez-Velasco -- 3.1 Introduction 39 -- 3.2 Frequency Domain Basics 40 -- 3.2.1 Phasors and FD Representation of Signals 40 -- 3.2.2 Fourier Series 43 -- 3.2.3 Fourier Transform 46 -- 3.3 Discrete-Time Frequency Analysis 48 -- 3.3.1 Aliasing Effect 50 -- 3.3.2 Sampling Theorem 51 -- 3.3.3 Conservation of Information and the DFT 53 -- 3.3.4 Fast Fourier Transform 54 -- 3.4 Frequency-Domain Transient Analysis 56 -- 3.4.1 Fourier Transforms and Transients 56 -- 3.4.2 Fourier and Laplace Transforms 62 -- 3.4.3 The Numerical Laplace Transform 63 -- 3.4.4 Application Examples with the NLT 65 -- 3.4.5 Brief History of NLT Development 65 -- 3.5 Multirate Transient Analysis 66 -- 3.6 Conclusions 69 -- Acknowledgement 70 -- References 70.
4 Real-Time Simulation Technologies in Engineering 72 /Christian Dufour and Jean B'elanger -- 4.1 Introduction 72 -- 4.2 Model-Based Design and Real-Time Simulation 73 -- 4.3 General Considerations about Real-Time Simulation 74 -- 4.3.1 The Constraint of Real-Time 74 -- 4.3.2 Stiffness Issues 75 -- 4.3.3 Simulator Bandwidth Considerations 75 -- 4.3.4 Simulation Bandwidth vs. Applications 75 -- 4.3.5 Achieving Very Low Latency for HIL Application 76 -- 4.3.6 Effective Parallel Processing for Fast EMT Simulation 77 -- 4.3.7 FPGA-Based Multirate Simulators 79 -- 4.3.8 Advanced Parallel Solvers without Artificial Delays or Stublines: Application to Active Distribution Networks 79 -- 4.3.9 The Need for Iterations in Real-Time 80 -- 4.4 Phasor-Mode Real-Time Simulation 82 -- 4.5 Modern Real-Time Simulator Requirements 82 -- 4.5.1 Simulator I/O Requirements 83 -- 4.6 Rapid Control Prototyping and Hardware-in-the-Loop Testing 85 -- 4.7 Power Grid Real-Time Simulation Applications 85 -- 4.7.1 Statistical Protection System Study 85 -- 4.7.2 Monte Carlo Tests for Power Grid Switching Surge System Studies 87 -- 4.7.3 Modular Multilevel Converter in HVDC Applications 88 -- 4.7.4 High-End Super-Large Power Grid Simulations 89 -- 4.8 Motor Drive and FPGA-Based Real-Time Simulation Applications 90 -- 4.8.1 Industrial Motor Drive Design and Testing Using CPU Models 90 -- 4.8.2 FPGA Modelling of SRM and PMSM Motor Drives 91 -- 4.9 Educational System: RPC-Based Study of DFIM Wind Turbine 94 -- 4.10 Mechatronic Real-Time Simulation Applications 95 -- 4.10.1 Aircraft Flight Training Simulator 95 -- 4.10.2 Aircraft Flight Parameter Identification 95 -- 4.10.3 International Space Station Robotic Arm Testing 95 -- 4.11 Conclusion 97 -- References 97 -- 5 Calculation of Power System Overvoltages 100 /Juan A. Martinez-Velasco and Francisco Gonz'alez-Molina -- 5.1 Introduction 100 -- 5.2 Power System Overvoltages 101 -- 5.2.1 Temporary Overvoltages 101 -- 5.2.2 Slow-Front Overvoltages 102 -- 5.2.3 Fast-Front Overvoltages 102.
5.2.4 Very-Fast-Front Overvoltages 103 -- 5.3 Temporary Overvoltages 103 -- 5.3.1 Introduction 103 -- 5.3.2 Modelling Guidelines for Temporary Overvoltages 103 -- 5.3.3 Faults to Grounds 104 -- 5.3.4 Load Rejection 110 -- 5.3.5 Harmonic Resonance 115 -- 5.3.6 Energization of Unloaded Transformers 120 -- 5.3.7 Ferroresonance 125 -- 5.3.8 Conclusions 133 -- 5.4 Switching Overvoltages 135 -- 5.4.1 Introduction 135 -- 5.4.2 Modelling Guidelines 135 -- 5.4.3 Switching Overvoltages 139 -- 5.4.4 Case Studies 149 -- 5.4.5 Validation 154 -- 5.5 Lightning Overvoltages 154 -- 5.5.1 Introduction 154 -- 5.5.2 Modelling Guidelines 155 -- 5.5.3 Case Studies 163 -- 5.5.4 Validation 172 -- 5.6 Very Fast Transient Overvoltages in Gas Insulated Substations 174 -- 5.6.1 Introduction 174 -- 5.6.2 Origin of VFTO in GIS 174 -- 5.6.3 Propagation of VFTs in GISs 176 -- 5.6.4 Modelling Guidelines 180 -- 5.6.5 Case Study 9: VFT in a 765 kV GIS 182 -- 5.6.6 Statistical Calculation 183 -- 5.6.7 Validation 185 -- 5.7 Conclusions 187 -- Acknowledgement 187 -- References 187 -- 6 Analysis of FACTS Controllers and their Transient Modelling Techniques 195 /Kalyan K. Sen -- 6.1 Introduction 195 -- 6.3 Modelling Guidelines 206 -- 6.3.1 Representation of a Power System 206 -- 6.3.2 Representation of System Control 206 -- 6.3.3 Representation of a Controlled Switch 209 -- 6.3.4 Simulation Errors and Control 210 -- 6.4 Modelling of FACTS Controllers 210 -- 6.4.1 Simulation of an Independent PFC in a Single Line Application 212 -- 6.4.2 Simulation of a Voltage Regulating Transformer 212 -- 6.4.3 Simulation of a Phase Angle Regulator 214 -- 6.4.4 Simulation of a Unified Power Flow Controller 215 -- 6.5 Simulation Results of a UPFC 230 -- 6.6 Simulation Results of an ST 238 -- 6.7 Conclusion 245 -- Acknowledgement 245 -- References 245 -- 7 Applications of Power Electronic Devices in Distribution Systems 248 /Arindam Ghosh and Farhad Shahnia -- 7.1 Introduction 248 -- 7.2 Modelling of Converter and Filter Structures for CPDs 250.
7.2.1 Three-Phase Converter Structures 250 -- 7.2.2 Filter Structures 251 -- 7.2.3 Dynamic Simulation of CPDs 252 -- 7.3 Distribution Static Compensator (DSTATCOM) 253 -- 7.3.1 Current Control Using DSTATCOM 253 -- 7.3.2 Voltage Control Using DSTATCOM 256 -- 7.4 Dynamic Voltage Restorer (DVR) 258 -- 7.5 Unified Power Quality Conditioner (UPQC) 263 -- 7.6 Voltage Balancing Using DSTATCOM and DVR 267 -- 7.7 Excess Power Circulation Using CPDs 271 -- 7.7.1 Current-Controlled DSTATCOM Application 271 -- 7.7.2 Voltage-Controlled DSTATCOM Application 272 -- 7.7.3 UPQC Application 276 -- 7.8 Conclusions 278 -- References 278 -- 8 Modelling of Electronically Interfaced DER Systems for Transient Analysis 280 /Amirnaser Yazdani and Omid Alizadeh -- 8.1 Introduction 280 -- 8.2 Generic Electronically Interfaced DER System 281 -- 8.3 Realization of Different DER Systems 283 -- 8.3.1 PV Energy Systems 283 -- 8.3.2 Fuel-Cell Systems 284 -- 8.3.3 Battery Energy Storage Systems 284 -- 8.3.4 Supercapacitor Energy Storage System 285 -- 8.3.5 Superconducting Magnetic Energy Storage System 285 -- 8.3.6 Wind Energy Systems 286 -- 8.3.7 Flywheel Energy Storage Systems 287 -- 8.4 Transient Analysis of Electronically Interfaced DER Systems 287 -- 8.5 Examples 288 -- 8.5.1 Example 1: Single-Stage PV Energy System 288 -- 8.5.2 Example 2: Direct-Drive Variable-Speed Wind Energy System 298 -- 8.6 Conclusion 315 -- References 315 -- 9 Simulation of Transients for VSC-HVDC Transmission Systems Based on Modular Multilevel Converters 317 /Hani Saad, S'ebastien Denneti`ere, Jean Mahseredjian, Tarek Ould-Bachir and Jean-Pierre David -- 9.1 Introduction 317 -- 9.2 MMC Topology 318 -- 9.3 MMC Models 320 -- 9.3.1 Model 1 - Full Detailed 320 -- 9.3.2 Model 2 - Detailed Equivalent 321 -- 9.3.3 Model 3 - Switching Function of MMC Arm 322 -- 9.3.4 Model 4 - AVM Based on Power Frequency 325 -- 9.4 Control System 327 -- 9.4.1 Operation Principle 327 -- 9.4.2 Upper-Level Control 328 -- 9.4.3 Lower-Level Control 333.
9.4.4 Control Structure Requirement Depending on MMC Model Type 336 -- 9.5 Model Comparisons 336 -- 9.5.1 Step Change on Active Power Reference 337 -- 9.5.2 Three-Phase AC Fault 337 -- 9.5.3 Influence of MMC Levels 338 -- 9.5.4 Pole-to-Pole DC Fault 338 -- 9.5.5 Startup Sequence 340 -- 9.5.6 Computational Performance 340 -- 9.6 Real-Time Simulation of MMC Using CPU and FPGA 342 -- 9.6.1 Relation between Sampling Time and N 344 -- 9.6.2 Optimization of Model 2 for Real-Time Simulation 345 -- 9.6.3 Real-Time Simulation Setup 346 -- 9.6.4 CPU-Based Model 347 -- 9.6.5 FPGA-Based Model 350 -- 9.7 Conclusions 356 -- References 357 -- 10 Dynamic Average Modelling of Rectifier Loads and AC-DC Converters for Power System Applications 360 /Sina Chiniforoosh, Juri Jatskevich, Hamid Atighechi and Juan A. Martinez-Velasco -- 10.1 Introduction 360 -- 10.2 Front-End Diode Rectifier System Configurations 361 -- 10.3 Detailed Analysis and Modes of Operation 365 -- 10.4 Dynamic Average Modelling 368 -- 10.4.1 Selected Dynamic AVMs 370 -- 10.4.2 Computer Implementation 372 -- 10.5 Verification and Comparison of the AVMs 372 -- 10.5.1 Steady-State Characteristics 372 -- 10.5.2 Model Dynamic Order and Eigenvalue Analysis 376 -- 10.5.3 Dynamic Performance Under Balanced and Unbalanced Conditions 377 -- 10.5.4 Input Sequence Impedances under Unbalanced Conditions 382 -- 10.5.5 Small-Signal Input/Output Impedances 383 -- 10.6 Generalization to High-Pulse-Count Converters 386 -- 10.6.1 Detailed Analysis 387 -- 10.6.2 Dynamic Average Modelling 388 -- 10.7 Generalization to PWM AC-DC Converters 391 -- 10.7.1 PWM Voltage-Source Converters 391 -- 10.7.2 Dynamic Average-Value Modelling of PWM Voltage-Source Converters 392 -- 10.8 Conclusions 394 -- Appendix 394 -- References 395 -- 11 Protection Systems 398 /Juan A. Martinez-Velasco -- 11.1 Introduction 398 -- 11.2 Modelling Guidelines for Power System Components 400 -- 11.2.1 Line Models 400 -- 11.2.2 Insulated Cables 401 -- 11.2.3 Source Models 401.
11.2.4 Transformer Models 401 -- 11.2.5 Circuit Breaker Models 403 -- 11.3 Models of Instrument Transformers 403 -- 11.3.1 Introduction 403 -- 11.3.2 Current Transformers 404 -- 11.3.3 Rogowski Coils 408 -- 11.3.4 Coupling Capacitor Voltage Transformers 410 -- 11.3.5 Voltage Transformers 412 -- 11.4 Relay Modelling 412 -- 11.4.1 Introduction 412 -- 11.4.2 Classification of Relay Models 412 -- 11.4.3 Relay Models 413 -- 11.5 Implementation of Relay Models 418 -- 11.5.1 Introduction 418 -- 11.5.2 Sources of Information for Building Relay Models 419 -- 11.5.3 Software Tools 420 -- 11.5.4 Implementation of Relay Models 421 -- 11.5.5 Interfacing Relay Models to Recorded Data 422 -- 11.5.6 Applications of Relay Models 423 -- 11.5.7 Limitations of Relay Models 424 -- 11.6 Validation of Relay Models 424 -- 11.6.1 Validation Procedures 424 -- 11.6.2 Relay Model Testing Procedures 425 -- 11.6.3 Accuracy Assessment 426 -- 11.6.4 Relay Testing Facilities 426 -- 11.7 Case Studies 427 -- 11.7.1 Introduction 427 -- 11.7.2 Case Study 1: Simulation of an Electromechanical Distance Relay 428 -- 11.7.3 Case Study 2: Simulation of a Numerical Distance Relay 430 -- 11.8 Protection of Distribution Systems 450 -- 11.8.1 Introduction 450 -- 11.8.2 Protection of Distribution Systems with Distributed Generation 451 -- 11.8.3 Modelling of Distribution Feeder Protective Devices 451 -- 11.8.4 Protection of the Interconnection of Distributed Generators 460 -- 11.8.5 Case Study 3 460 -- 11.8.6 Case Study 4 465 -- 11.9 Conclusions 471 -- Acknowledgement 475 -- References 476 -- 12 Time-Domain Analysis of the Smart Grid Technologies: Possibilities and Challenges 481 /Francisco de Le'on, Reynaldo Salcedo, Xuanchang Ran and Juan A. Martinez-Velasco -- 12.1 Introduction 481 -- 12.2 Distribution Systems 482 -- 12.2.1 Radial Distribution Systems 483 -- 12.2.2 Networked Distribution Systems 484 -- 12.3 Restoration and Reconfiguration of the Smart Grid 487 -- 12.3.1 Introduction 487 -- 12.3.2 Heavily Meshed Networked Distribution Systems 487.
12.4 Integration of Distributed Generation 498 -- 12.4.1 Scope 498 -- 12.4.2 Radial Distribution Systems 499 -- 12.4.3 Heavily Meshed Networked Distribution Systems 503 -- 12.5 Overvoltages in Distribution Networks 515 -- 12.5.1 Introduction 515 -- 12.5.2 Ferroresonant Overvoltages 516 -- 12.5.3 Long-Duration Overvoltages due to Backfeeding 519 -- 12.6 Development of Data Translators for Interfacing Power-Flow Programs with EMTP-Type Programs 529 -- 12.6.1 Introduction 529 -- 12.6.2 Power-Flow to EMTP-RV Translator 530 -- 12.6.3 Example of the Translation of a Transmission Line 533 -- 12.6.4 Challenges of Development 533 -- 12.6.5 Model Validation 535 -- 12.6.6 Recommendations 542 -- Acknowledgement 546 -- References 546 -- 13 Interfacing Methods for Electromagnetic Transient Simulation: New Possibilities for Analysis and Design 552 /Shaahin Filizadeh -- 13.1 Introduction 552 -- 13.2 Need for Interfacing 553 -- 13.3 Interfacing Templates 554 -- 13.3.1 Static Interfacing 554 -- 13.3.2 Dynamic Interfacing and Memory Management 555 -- 13.3.3 Wrapper Interfaces 555 -- 13.4 Interfacing Implementation Options: External vs Internal Interfaces 555 -- 13.4.1 External Interfaces 556 -- 13.4.2 Internal Interfaces 556 -- 13.5 Multiple Interfacing 556 -- 13.5.1 Core-Type Interfacing 557 -- 13.5.2 Chain-Type Interfacing 557 -- 13.5.3 Loop Interfacing 558 -- 13.6 Examples of Interfacing 558 -- 13.6.1 Interfacing to Matlab/Simulink 558 -- 13.6.2 Wrapper Interfacing: Run-Controllers and Multiple-Runs 560 -- 13.7 Design Process Using EMT Simulation Tools 560 -- 13.7.1 Parameter Selection Techniques 561 -- 13.7.2 Uncertainty Analysis 563 -- 13.8 Conclusions 566 -- References 566 -- AnnexA: Techniques and Computer Codes for Rational Modelling of Frequency-Dependent Components and Subnetworks 568 /Bjorn Gustavsen -- A.1 Introduction 568 -- A.2 Rational Functions 569 -- A.3 Time-Domain Simulation 569 -- A.4 Fitting Techniques 569 -- A.4.1 Polynomial Fitting 569 -- A.4.2 Bode's Asymptotic Fitting 570.
A.4.3 Vector Fitting 570 -- A.5 Passivity 571 -- A.6 Matrix Fitting Toolbox 572 -- A.6.1 General 572 -- A.6.2 Overview 572 -- A.7 Example A.1: Electrical Circuit 573 -- A.8 Example 6.2: High-Frequency Transformer Modelling 575 -- A.8.1 Measurement 575 -- A.8.2 Rational Approximation 575 -- A.8.3 Passivity Enforcement 575 -- A.8.4 Time-Domain Simulation 576 -- A.8.5 Comparison with Time-Domain Measurement 577 -- References 579 -- AnnexB: Dynamic System Equivalents 581 /Udaya D. Annakkage -- B.1 Introduction 581 -- B.2 High-Frequency Equivalents 582 -- B.2.1 Introduction 582 -- B.2.2 Frequency-Dependent Network Equivalent (FDNE) 582 -- B.2.3 Examples of High-Frequency FDNE 583 -- B.2.4 Two-Layer Network Equivalent (TLNE) 586 -- B.2.5 Modified Two-Layer Network Equivalent 592 -- B.2.6 Other Methods 594 -- B.2.7 Numerical Issues 594 -- B.3 Low-Frequency Equivalents 595 -- B.3.1 Introduction 595 -- B.3.2 Modal Methods 596 -- B.3.3 Coherency Methods 596 -- B.3.4 Measurement or Simulation-Based Methods 597 -- B.4 Wideband Equivalents 597 -- B.5 Conclusions 597 -- References 598 -- Index 601.
Record Nr. UNINA-9910808241903321
Martinez-Velasco Juan A.  
Chichester, West Sussex, United Kingdom : , : John Wiley & Sons, Inc., , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui