top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Algebraic geometry modeling in information theory [[electronic resource] /] / edited by Edgar Martinez Moro
Algebraic geometry modeling in information theory [[electronic resource] /] / edited by Edgar Martinez Moro
Pubbl/distr/stampa Hackensack, NJ, : World Scientific, 2013
Descrizione fisica 1 online resource (334 p.)
Disciplina 003/.54
Altri autori (Persone) Martinez-MoroEdgar
Collana Series on coding theory and cryptology
Soggetto topico Coding theory
Geometry, Algebraic
Cryptography
Soggetto genere / forma Electronic books.
ISBN 1-299-28125-7
981-4335-76-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; Sage: A Basic Overview for Coding Theory and Cryptography D. Joyner; 0.1. Introduction; 0.2. What is Sage?; 0.2.1. Functionality of selected components of Sage; 0.2.2. History; 0.2.3. Why Python?; 0.2.4. The CLI; 0.2.5. The GUI; 0.2.6. Open source philosophy; 0.3. Coding theory functionality in Sage; 0.3.1. General constructions; 0.3.2. Coding theory functions; 0.3.3. Weight enumerator polynomial; 0.3.4. More code constructions; 0.3.5. Automorphism group of a code; 0.3.6. Even more code constructions; 0.3.7. Block designs and codes; 0.3.8. Special constructions
0.3.9. Coding theory bounds0.3.10. Asymptotic bounds; 0.4. Cryptography in Sage; 0.4.1. Classical cryptography; 0.4.2. Algebraic cryptosystems; 0.4.3. RSA; 0.4.4. Discrete logs; 0.4.5. Diffle-Hellman; 0.4.6. Linear feedback shift registers; 0.4.7. BBS streamcipher; 0.4.8. Blum-Goldwasser cryptosystem; 0.5. Miscellaneous topics; 0.5.1. Duursma zeta functions; 0.5.2. Self-dual codes; 0.5.3. Cool example (on self-dual codes); 0.6. Coding theory not implemented in Sage; References; Aspects of Random Network Coding O. Geil and C. Thomsen; 1.1. Introduction; 1.2. The network coding problem
1.2.1. Linear network coding for multicast1.2.2. A polynomial time algorithm for solving the multicast problem; 1.3. Random network coding; 1.3.1. The algebraic approach; 1.3.2. The combinatorial approach; 1.3.2.1. Flow bounds; 1.3.2.2. The bounds by Balli, Yan, and Zhang; 1.4. Bibliographic notes; References; Steganography from a Coding Theory Point of View C. Munuera; 2.1. Introduction; 2.1.1. What is steganography?; 2.1.2. Digital steganography; 2.1.3. Steganography, cryptography and watermarking; 2.1.4. About this chapter; 2.2. Steganographic systems; 2.2.1. The cover
2.2.2. Steganographic schemes2.2.3. Selection rules; 2.2.4. Parameters; 2.2.5. Proper stegoschemes; 2.3. Error-Correcting codes; 2.3.1. Correcting errors; 2.3.2. Linear codes over fields; 2.3.3. An example: binary Hamming codes; 2.3.4. Generalized Hamming weights for linear codes; 2.4. Linking the problems; 2.4.1. Stegoschemes and error-correcting codes; 2.4.2. Group codes and stegoschemes; 2.4.3. Linear stegoschemes over rings Zq; 2.4.4. Linear stegoschemes over fields; 2.5. Bounds; 2.5.1. The domain of stegoschemes; 2.5.2. Balls and entropy; 2.5.3. A Hamming-like bound
2.5.4. Asymptotic bounds2.5.5. Perfect stegoschemes; 2.5.6. Another new problem for coding theory; 2.6. Nonshared selection rules; 2.6.1. Wet paper codes; 2.6.2. Solvability and the weight hierarchy of codes; 2.6.3. The rank of random matrices; 2.7. The ZZW embedding construction; 2.7.1. Description of the method; 2.7.2. Asymptotic behavior; 2.8. Bibliographical notes and further reading; Acknowledgments; References; An Introduction to LDPC Codes I. Marquez-Corbella and E. Martınez-Moro; 3.1. Introduction; 3.2. Representation for LDPC codes; 3.2.1. Tanner graph; 3.3. Communication channels
3.4. Decoding algorithms
Record Nr. UNINA-9910465421903321
Hackensack, NJ, : World Scientific, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algebraic geometry modeling in information theory [[electronic resource] /] / edited by Edgar Martinez Moro
Algebraic geometry modeling in information theory [[electronic resource] /] / edited by Edgar Martinez Moro
Pubbl/distr/stampa Hackensack, NJ, : World Scientific, 2013
Descrizione fisica 1 online resource (334 p.)
Disciplina 003/.54
Altri autori (Persone) Martinez-MoroEdgar
Collana Series on coding theory and cryptology
Soggetto topico Coding theory
Geometry, Algebraic
Cryptography
ISBN 1-299-28125-7
981-4335-76-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; Sage: A Basic Overview for Coding Theory and Cryptography D. Joyner; 0.1. Introduction; 0.2. What is Sage?; 0.2.1. Functionality of selected components of Sage; 0.2.2. History; 0.2.3. Why Python?; 0.2.4. The CLI; 0.2.5. The GUI; 0.2.6. Open source philosophy; 0.3. Coding theory functionality in Sage; 0.3.1. General constructions; 0.3.2. Coding theory functions; 0.3.3. Weight enumerator polynomial; 0.3.4. More code constructions; 0.3.5. Automorphism group of a code; 0.3.6. Even more code constructions; 0.3.7. Block designs and codes; 0.3.8. Special constructions
0.3.9. Coding theory bounds0.3.10. Asymptotic bounds; 0.4. Cryptography in Sage; 0.4.1. Classical cryptography; 0.4.2. Algebraic cryptosystems; 0.4.3. RSA; 0.4.4. Discrete logs; 0.4.5. Diffle-Hellman; 0.4.6. Linear feedback shift registers; 0.4.7. BBS streamcipher; 0.4.8. Blum-Goldwasser cryptosystem; 0.5. Miscellaneous topics; 0.5.1. Duursma zeta functions; 0.5.2. Self-dual codes; 0.5.3. Cool example (on self-dual codes); 0.6. Coding theory not implemented in Sage; References; Aspects of Random Network Coding O. Geil and C. Thomsen; 1.1. Introduction; 1.2. The network coding problem
1.2.1. Linear network coding for multicast1.2.2. A polynomial time algorithm for solving the multicast problem; 1.3. Random network coding; 1.3.1. The algebraic approach; 1.3.2. The combinatorial approach; 1.3.2.1. Flow bounds; 1.3.2.2. The bounds by Balli, Yan, and Zhang; 1.4. Bibliographic notes; References; Steganography from a Coding Theory Point of View C. Munuera; 2.1. Introduction; 2.1.1. What is steganography?; 2.1.2. Digital steganography; 2.1.3. Steganography, cryptography and watermarking; 2.1.4. About this chapter; 2.2. Steganographic systems; 2.2.1. The cover
2.2.2. Steganographic schemes2.2.3. Selection rules; 2.2.4. Parameters; 2.2.5. Proper stegoschemes; 2.3. Error-Correcting codes; 2.3.1. Correcting errors; 2.3.2. Linear codes over fields; 2.3.3. An example: binary Hamming codes; 2.3.4. Generalized Hamming weights for linear codes; 2.4. Linking the problems; 2.4.1. Stegoschemes and error-correcting codes; 2.4.2. Group codes and stegoschemes; 2.4.3. Linear stegoschemes over rings Zq; 2.4.4. Linear stegoschemes over fields; 2.5. Bounds; 2.5.1. The domain of stegoschemes; 2.5.2. Balls and entropy; 2.5.3. A Hamming-like bound
2.5.4. Asymptotic bounds2.5.5. Perfect stegoschemes; 2.5.6. Another new problem for coding theory; 2.6. Nonshared selection rules; 2.6.1. Wet paper codes; 2.6.2. Solvability and the weight hierarchy of codes; 2.6.3. The rank of random matrices; 2.7. The ZZW embedding construction; 2.7.1. Description of the method; 2.7.2. Asymptotic behavior; 2.8. Bibliographical notes and further reading; Acknowledgments; References; An Introduction to LDPC Codes I. Marquez-Corbella and E. Martınez-Moro; 3.1. Introduction; 3.2. Representation for LDPC codes; 3.2.1. Tanner graph; 3.3. Communication channels
3.4. Decoding algorithms
Record Nr. UNINA-9910792056303321
Hackensack, NJ, : World Scientific, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algebraic geometry modeling in information theory / / edited by Edgar Martinez Moro
Algebraic geometry modeling in information theory / / edited by Edgar Martinez Moro
Edizione [1st ed.]
Pubbl/distr/stampa Hackensack, NJ, : World Scientific, 2013
Descrizione fisica 1 online resource (334 p.)
Disciplina 003/.54
Altri autori (Persone) Martinez-MoroEdgar
Collana Series on coding theory and cryptology
Soggetto topico Coding theory
Geometry, Algebraic
Cryptography
ISBN 1-299-28125-7
981-4335-76-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; Sage: A Basic Overview for Coding Theory and Cryptography D. Joyner; 0.1. Introduction; 0.2. What is Sage?; 0.2.1. Functionality of selected components of Sage; 0.2.2. History; 0.2.3. Why Python?; 0.2.4. The CLI; 0.2.5. The GUI; 0.2.6. Open source philosophy; 0.3. Coding theory functionality in Sage; 0.3.1. General constructions; 0.3.2. Coding theory functions; 0.3.3. Weight enumerator polynomial; 0.3.4. More code constructions; 0.3.5. Automorphism group of a code; 0.3.6. Even more code constructions; 0.3.7. Block designs and codes; 0.3.8. Special constructions
0.3.9. Coding theory bounds0.3.10. Asymptotic bounds; 0.4. Cryptography in Sage; 0.4.1. Classical cryptography; 0.4.2. Algebraic cryptosystems; 0.4.3. RSA; 0.4.4. Discrete logs; 0.4.5. Diffle-Hellman; 0.4.6. Linear feedback shift registers; 0.4.7. BBS streamcipher; 0.4.8. Blum-Goldwasser cryptosystem; 0.5. Miscellaneous topics; 0.5.1. Duursma zeta functions; 0.5.2. Self-dual codes; 0.5.3. Cool example (on self-dual codes); 0.6. Coding theory not implemented in Sage; References; Aspects of Random Network Coding O. Geil and C. Thomsen; 1.1. Introduction; 1.2. The network coding problem
1.2.1. Linear network coding for multicast1.2.2. A polynomial time algorithm for solving the multicast problem; 1.3. Random network coding; 1.3.1. The algebraic approach; 1.3.2. The combinatorial approach; 1.3.2.1. Flow bounds; 1.3.2.2. The bounds by Balli, Yan, and Zhang; 1.4. Bibliographic notes; References; Steganography from a Coding Theory Point of View C. Munuera; 2.1. Introduction; 2.1.1. What is steganography?; 2.1.2. Digital steganography; 2.1.3. Steganography, cryptography and watermarking; 2.1.4. About this chapter; 2.2. Steganographic systems; 2.2.1. The cover
2.2.2. Steganographic schemes2.2.3. Selection rules; 2.2.4. Parameters; 2.2.5. Proper stegoschemes; 2.3. Error-Correcting codes; 2.3.1. Correcting errors; 2.3.2. Linear codes over fields; 2.3.3. An example: binary Hamming codes; 2.3.4. Generalized Hamming weights for linear codes; 2.4. Linking the problems; 2.4.1. Stegoschemes and error-correcting codes; 2.4.2. Group codes and stegoschemes; 2.4.3. Linear stegoschemes over rings Zq; 2.4.4. Linear stegoschemes over fields; 2.5. Bounds; 2.5.1. The domain of stegoschemes; 2.5.2. Balls and entropy; 2.5.3. A Hamming-like bound
2.5.4. Asymptotic bounds2.5.5. Perfect stegoschemes; 2.5.6. Another new problem for coding theory; 2.6. Nonshared selection rules; 2.6.1. Wet paper codes; 2.6.2. Solvability and the weight hierarchy of codes; 2.6.3. The rank of random matrices; 2.7. The ZZW embedding construction; 2.7.1. Description of the method; 2.7.2. Asymptotic behavior; 2.8. Bibliographical notes and further reading; Acknowledgments; References; An Introduction to LDPC Codes I. Marquez-Corbella and E. Martınez-Moro; 3.1. Introduction; 3.2. Representation for LDPC codes; 3.2.1. Tanner graph; 3.3. Communication channels
3.4. Decoding algorithms
Record Nr. UNINA-9910816658403321
Hackensack, NJ, : World Scientific, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui