Nanolubricants [[electronic resource] /] / edited by Jean Michel Martin, Nobuo Ohmae |
Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : Wiley, c2008 |
Descrizione fisica | 1 online resource (248 p.) |
Disciplina |
621.8/9
621.89 |
Altri autori (Persone) |
MartinJean Michel <1948->
OhmaeNobuo |
Collana | Tribology series |
Soggetto topico |
Lubrication and lubricants
Nanoparticles Nanotechnology Metal clusters |
ISBN |
1-282-12391-2
9786612123917 0-470-98771-5 0-470-98770-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Nanolubricants; Contents; Preface; List of Acronyms; 1 Colloidal Lubrication; 1.1 Stability of Colloids Dispersed in a Base Oil; 1.2 Lubrication by Micellar Systems; 1.3 Lubrication by Metallic Nanoparticles; 1.4 Colloids Embedded in a Coating; References; 2 Nanoparticles Made of Metal Dichalcogenides; 2.1 Tribological Properties of 2H-MoS2; 2.2 IF-MoS2 and IF-WS2 Fullerene-like Nanoparticles; 2.3 IF-MoS2 and IF-WS2 as Additives in Boundary Lubrication; 2.3.1 IF-MoS2; 2.3.2 IF-WS2; 2.3.3 Other Fullerenes; 2.4 NT-MoS2 and NT-WS2 Nanotubes as Lubricant Additives
2.5 Lubrication by a Mixture of Fullerenes2.6 Tribological Properties of Mo-S-I Nanowires; 2.6.1 Influence of the Nanowire Concentration in PAO on the Tribological Properties; 2.7 Raman Tribometry on IF-MS2; 2.7.1 In situ Observation of the Structures in the Interface; 2.7.2 Raman Tribometry; 2.8 Lubrication Mechanism of IF-MS2: 'A Drug Delivery' Model; 2.9 Conclusion; Acknowledgements; References; 3 Carbon-Based Nanolubricants; 3.1 Graphite Onion Synthesis and Characterization; 3.2 Tribological Properties of Different Carbon Onions; 3.3 Possible Lubrication Mechanism of Carbon Onions 3.4 Nanotube Synthesis and Characterization3.5 Friction-Reducing and Antiwear Properties of Different Nanotubes; 3.5.1 SWNTs; 3.5.2 DWNTs; 3.5.3 MWNTs; 3.6 Possible Mechanism of Action of the Nanotubes; 3.7 Conclusion; Acknowledgements; References; 4 Reverse Micelles and Encapsulated Nanoparticle Approaches; 4.1 Introduction; 4.2 Overview of the Structures of Stoichiometric and Overbased Soap Additives; 4.2.1 Dynamic Organic Micelles; 4.2.2 Dynamic Soap Micelles; 4.2.3 Encapsulated Nano-Sized Particles, also Called 'Overbased Reverse Micelles' 4.3 Behaviour of the Micelles at the Solid-Liquid Interface4.4 Tribologic Properties of Colloidal Systems; 4.4.1 Friction Reduction Properties of Micelles Related to Their Structure; 4.4.2 Antiwear Action Mechanisms of Colloidal Systems; 4.4.3 Nature and Structure of Antiwear Films Obtained with Strontium and Calcium Compounds; 4.4.4 Associated Antifriction and Antiwear Actions in Tribological Behaviour of Colloidal additives; 4.5 Conclusion and Perspectives; References; 5 Nanolubricants Made of Metals; 5.1 Introduction; 5.2 Nanolubricants Made of Coinage Metal Nanoparticles 5.2.1 Organic Compound Surface-Capped Copper Nanoparticles as Oil Additives5.2.2 Copper Nanoparticles Passivated by Carbon Film Used as Oil Additives; 5.3 Nanolubricants Made of Low Melting Point Metal Nanoparticles; 5.3.1 Nanolubricants of Indium, Tin and Bismuth via the Direct Solution-Dispersing Method; 5.3.2 Nanolubricants of Lead and Bismuth via the Surfactant-Assisted Solution-Dispersing Method; 5.4 Nanolubricants Made of Low Melting Point Metal Alloy Nanoparticles; 5.4.1 In-Sn, Bi-In and Pb-Bi Nanoparticles Prepared by the Direct Solution-Dispersing Method 5.4.2 Sn-Bi and Sn-Cd Alloy Nanoparticles Prepared by the Ultrasonic-Assistant Solution-Dispersing Method |
Record Nr. | UNINA-9910144430103321 |
Chichester, England ; ; Hoboken, NJ, : Wiley, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanolubricants / / edited by Jean Michel Martin, Nobuo Ohmae |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : Wiley, c2008 |
Descrizione fisica | 1 online resource (248 p.) |
Disciplina |
621.8/9
621.89 |
Altri autori (Persone) |
MartinJean Michel <1948->
OhmaeNobuo |
Collana | Tribology series |
Soggetto topico |
Lubrication and lubricants
Nanoparticles Nanotechnology Metal clusters |
ISBN |
1-282-12391-2
9786612123917 0-470-98771-5 0-470-98770-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Nanolubricants; Contents; Preface; List of Acronyms; 1 Colloidal Lubrication; 1.1 Stability of Colloids Dispersed in a Base Oil; 1.2 Lubrication by Micellar Systems; 1.3 Lubrication by Metallic Nanoparticles; 1.4 Colloids Embedded in a Coating; References; 2 Nanoparticles Made of Metal Dichalcogenides; 2.1 Tribological Properties of 2H-MoS2; 2.2 IF-MoS2 and IF-WS2 Fullerene-like Nanoparticles; 2.3 IF-MoS2 and IF-WS2 as Additives in Boundary Lubrication; 2.3.1 IF-MoS2; 2.3.2 IF-WS2; 2.3.3 Other Fullerenes; 2.4 NT-MoS2 and NT-WS2 Nanotubes as Lubricant Additives
2.5 Lubrication by a Mixture of Fullerenes2.6 Tribological Properties of Mo-S-I Nanowires; 2.6.1 Influence of the Nanowire Concentration in PAO on the Tribological Properties; 2.7 Raman Tribometry on IF-MS2; 2.7.1 In situ Observation of the Structures in the Interface; 2.7.2 Raman Tribometry; 2.8 Lubrication Mechanism of IF-MS2: 'A Drug Delivery' Model; 2.9 Conclusion; Acknowledgements; References; 3 Carbon-Based Nanolubricants; 3.1 Graphite Onion Synthesis and Characterization; 3.2 Tribological Properties of Different Carbon Onions; 3.3 Possible Lubrication Mechanism of Carbon Onions 3.4 Nanotube Synthesis and Characterization3.5 Friction-Reducing and Antiwear Properties of Different Nanotubes; 3.5.1 SWNTs; 3.5.2 DWNTs; 3.5.3 MWNTs; 3.6 Possible Mechanism of Action of the Nanotubes; 3.7 Conclusion; Acknowledgements; References; 4 Reverse Micelles and Encapsulated Nanoparticle Approaches; 4.1 Introduction; 4.2 Overview of the Structures of Stoichiometric and Overbased Soap Additives; 4.2.1 Dynamic Organic Micelles; 4.2.2 Dynamic Soap Micelles; 4.2.3 Encapsulated Nano-Sized Particles, also Called 'Overbased Reverse Micelles' 4.3 Behaviour of the Micelles at the Solid-Liquid Interface4.4 Tribologic Properties of Colloidal Systems; 4.4.1 Friction Reduction Properties of Micelles Related to Their Structure; 4.4.2 Antiwear Action Mechanisms of Colloidal Systems; 4.4.3 Nature and Structure of Antiwear Films Obtained with Strontium and Calcium Compounds; 4.4.4 Associated Antifriction and Antiwear Actions in Tribological Behaviour of Colloidal additives; 4.5 Conclusion and Perspectives; References; 5 Nanolubricants Made of Metals; 5.1 Introduction; 5.2 Nanolubricants Made of Coinage Metal Nanoparticles 5.2.1 Organic Compound Surface-Capped Copper Nanoparticles as Oil Additives5.2.2 Copper Nanoparticles Passivated by Carbon Film Used as Oil Additives; 5.3 Nanolubricants Made of Low Melting Point Metal Nanoparticles; 5.3.1 Nanolubricants of Indium, Tin and Bismuth via the Direct Solution-Dispersing Method; 5.3.2 Nanolubricants of Lead and Bismuth via the Surfactant-Assisted Solution-Dispersing Method; 5.4 Nanolubricants Made of Low Melting Point Metal Alloy Nanoparticles; 5.4.1 In-Sn, Bi-In and Pb-Bi Nanoparticles Prepared by the Direct Solution-Dispersing Method 5.4.2 Sn-Bi and Sn-Cd Alloy Nanoparticles Prepared by the Ultrasonic-Assistant Solution-Dispersing Method |
Record Nr. | UNINA-9910819052603321 |
Chichester, England ; ; Hoboken, NJ, : Wiley, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|