top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial transmission lines for RF and microwave applications / / Ferran Martin
Artificial transmission lines for RF and microwave applications / / Ferran Martin
Autore Martín Ferran <1965->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2015
Descrizione fisica 1 online resource (1170 p.)
Disciplina 621.38413
Collana Wiley Series in Microwave and Optical Engineering
Soggetto topico Radio lines
Microwave transmission lines
ISBN 1-119-05837-6
1-119-05833-3
1-119-05840-6
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Preface Acknowledgments 1. Fundamentals of Planar Transmission Lines 1.1 Planar transmission lines, distributed circuits and artificial transmission lines 1.2 Distributed circuit analysis and main transmission line parameters 1.3 Loaded (terminated) transmission lines 1.4 Lossy transmission lines 1.5 Comparative analysis of planar transmission lines 1.6 Some illustrative applications of planar transmission lines References 2. Artificial Transmission Lines based on Periodic Structures 2.1 Introduction and scope 2.2 Floquet analysis of periodic structures 2.3 The transfer matrix method 2.4 Coupled mode theory 2.5 Applications References 3. Metamaterial Transmission Lines: Fundamentals, Theory, Circuit Models, and Main Implementations 3.1 Introduction, terminology, and scope 3.2 Effective medium metamaterials 3.3 Electrically small resonators for metamaterials and microwave circuit design 3.4 Canonical models of metamaterial transmission lines 3.5 Implementation of metamaterial transmission lines and lumped element equivalent circuit models References 4. Metamaterial Transmission Lines: RF/Microwave Applications 4.1 Introduction 4.2 Applications of CRLH transmission lines 4.3 Transmission lines with metamaterial loading and applications References 5. Reconfigurable, Tunable and Nonlinear Artificial Transmission Lines 5.1 Introduction 5.2 Materials, components and technologies to implement tunable devices 5.3 Tunable and reconfigurable metamaterial transmission lines and applications 5.4 Nonlinear transmission lines (NLTLs) References 6. Other Advanced Transmission Lines 6.1 Introduction 6.2 Magnetoinductive-wave (MIW) and electroinductive-wave (EIW) delay lines 6.3 Balanced transmission lines with common-mode suppression 6.4 Wideband artificial transmission lines 6.5 Substrate integrated waveguides (SIW) and their application to metamaterial transmission lines References Appendixes Appendix A. Equivalence between plane wave propagation in source-free, linear, isotropic and homogeneous media, TEM wave propagation in transmission lines and wave propagation in transmission lines described by its distributed circuit model Appendix B. The Smith Chart Appendix C. The scattering matrix Appendix D. Current density distribution in a conductor Appendix E. Derivation of the simplified coupled mode equations and coupling coefficient from the distributed circuit model of a transmission line Appendix F. Averaging the effective dielectric constant in EBG-based transmission lines Appendix G. Parameter extraction G.1 Parameter extraction in CSRR-loaded lines G.2 Parameter extraction in SRR-loaded lines G.3 Parameter extraction in OSRR-loaded lines G.4 Parameter extraction in OCSRR-loaded lines Appendix H. Synthesis of resonant type metamaterial transmission lines by means of Aggressive Space Mapping (ASM) H.1 General formulation of ASM H.2 Determination of the convergence region in the coarse model space H.3 Determination of the initial layout H.4 The core ASM algorithm H.5 Illustrative examples and convergence speed Appendix I. Conditions to obtain all-pass X-type and bridged-T networks Index .
Record Nr. UNINA-9910131540603321
Martín Ferran <1965->  
Hoboken, New Jersey : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial transmission lines for RF and microwave applications / / Ferran Martin
Artificial transmission lines for RF and microwave applications / / Ferran Martin
Autore Martín Ferran <1965->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2015
Descrizione fisica 1 online resource (1170 p.)
Disciplina 621.38413
Collana Wiley Series in Microwave and Optical Engineering
Soggetto topico Radio lines
Microwave transmission lines
ISBN 1-119-05837-6
1-119-05833-3
1-119-05840-6
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Preface Acknowledgments 1. Fundamentals of Planar Transmission Lines 1.1 Planar transmission lines, distributed circuits and artificial transmission lines 1.2 Distributed circuit analysis and main transmission line parameters 1.3 Loaded (terminated) transmission lines 1.4 Lossy transmission lines 1.5 Comparative analysis of planar transmission lines 1.6 Some illustrative applications of planar transmission lines References 2. Artificial Transmission Lines based on Periodic Structures 2.1 Introduction and scope 2.2 Floquet analysis of periodic structures 2.3 The transfer matrix method 2.4 Coupled mode theory 2.5 Applications References 3. Metamaterial Transmission Lines: Fundamentals, Theory, Circuit Models, and Main Implementations 3.1 Introduction, terminology, and scope 3.2 Effective medium metamaterials 3.3 Electrically small resonators for metamaterials and microwave circuit design 3.4 Canonical models of metamaterial transmission lines 3.5 Implementation of metamaterial transmission lines and lumped element equivalent circuit models References 4. Metamaterial Transmission Lines: RF/Microwave Applications 4.1 Introduction 4.2 Applications of CRLH transmission lines 4.3 Transmission lines with metamaterial loading and applications References 5. Reconfigurable, Tunable and Nonlinear Artificial Transmission Lines 5.1 Introduction 5.2 Materials, components and technologies to implement tunable devices 5.3 Tunable and reconfigurable metamaterial transmission lines and applications 5.4 Nonlinear transmission lines (NLTLs) References 6. Other Advanced Transmission Lines 6.1 Introduction 6.2 Magnetoinductive-wave (MIW) and electroinductive-wave (EIW) delay lines 6.3 Balanced transmission lines with common-mode suppression 6.4 Wideband artificial transmission lines 6.5 Substrate integrated waveguides (SIW) and their application to metamaterial transmission lines References Appendixes Appendix A. Equivalence between plane wave propagation in source-free, linear, isotropic and homogeneous media, TEM wave propagation in transmission lines and wave propagation in transmission lines described by its distributed circuit model Appendix B. The Smith Chart Appendix C. The scattering matrix Appendix D. Current density distribution in a conductor Appendix E. Derivation of the simplified coupled mode equations and coupling coefficient from the distributed circuit model of a transmission line Appendix F. Averaging the effective dielectric constant in EBG-based transmission lines Appendix G. Parameter extraction G.1 Parameter extraction in CSRR-loaded lines G.2 Parameter extraction in SRR-loaded lines G.3 Parameter extraction in OSRR-loaded lines G.4 Parameter extraction in OCSRR-loaded lines Appendix H. Synthesis of resonant type metamaterial transmission lines by means of Aggressive Space Mapping (ASM) H.1 General formulation of ASM H.2 Determination of the convergence region in the coarse model space H.3 Determination of the initial layout H.4 The core ASM algorithm H.5 Illustrative examples and convergence speed Appendix I. Conditions to obtain all-pass X-type and bridged-T networks Index .
Record Nr. UNINA-9910812976403321
Martín Ferran <1965->  
Hoboken, New Jersey : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Planar microwave sensors / / Ferran Martín [and three others]
Planar microwave sensors / / Ferran Martín [and three others]
Autore Martín Ferran <1965->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2023]
Descrizione fisica 1 online resource (483 pages)
Disciplina 621.3813
Collana IEEE Press Ser.
Soggetto topico Microwave detectors
ISBN 1-119-81106-6
1-119-81104-X
1-119-81105-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- About the Authors -- List of Acronyms -- Chapter 1 Introduction to Planar Microwave Sensors -- 1.1 Sensor Performance Indicators, Classification Criteria, and General Overview of Sensing Technologies -- 1.1.1 Performance Indicators -- 1.1.2 Sensors' Classification Criteria -- 1.1.3 Sensing Technologies -- 1.1.3.1 Optical Sensors -- 1.1.3.2 Magnetic Sensors -- 1.1.3.3 Acoustic Sensors -- 1.1.3.4 Mechanical Sensors -- 1.1.3.5 Electric Sensors -- 1.2 Microwave Sensors -- 1.2.1 Remote Sensing: RADARs and Radiometers -- 1.2.2 Sensors for In Situ Measurement of Physical Parameters and Material Properties: Non-remote Sensors -- 1.2.2.1 Classification of Non-remote Microwave Sensors -- 1.2.2.2 Resonant Cavity Sensors -- 1.2.2.3 The Nicolson-Ross-Weir (NRW) Method -- 1.2.2.4 Coaxial Probe Sensors -- 1.2.2.5 Planar Sensors -- 1.3 Classification of Planar Microwave Sensors -- 1.3.1 Contact and Contactless Sensors -- 1.3.2 Wired and Wireless Sensors -- 1.3.3 Single-Ended and Differential-Mode Sensors -- 1.3.4 Resonant and Nonresonant Sensors -- 1.3.5 Reflective-Mode and Transmission-Mode Sensors -- 1.3.6 Sensor Classification by Frequency of Operation -- 1.3.7 Sensor Classification by Application -- 1.3.8 Sensor Classification by Working Principle -- 1.3.8.1 Frequency-Variation Sensors -- 1.3.8.2 Phase-Variation Sensors -- 1.3.8.3 Coupling-Modulation Sensors -- 1.3.8.4 Frequency-Splitting Sensors -- 1.3.8.5 Differential-Mode Sensors -- 1.3.8.6 RFID Sensors -- 1.4 Comparison of Planar Microwave Sensors with Other Sensing Technologies -- References -- Chapter 2 Frequency-Variation Sensors -- 2.1 General Working Principle of Frequency-Variation Sensors -- 2.2 Transmission-Line Resonant Sensors -- 2.2.1 Planar Resonant Elements for Sensing.
2.2.1.1 Semi-Lumped Metallic Resonators -- 2.2.1.2 Semi-Lumped Slotted Resonators -- 2.2.2 Sensitivity Analysis -- 2.2.3 Sensors for Dielectric Characterization -- 2.2.3.1 CSRR-Based Microstrip Sensor -- 2.2.3.2 DB-DGS-Based Microstrip Sensor -- 2.2.4 Measuring Material and Liquid Composition -- 2.2.5 Displacement Sensors -- 2.2.6 Sensor Arrays for Biomedical Analysis -- 2.2.7 Multifrequency Sensing for Selective Determination of Material Composition -- 2.3 Other Frequency-Variation Resonant Sensors -- 2.3.1 One-Port Reflective-Mode Submersible Sensors -- 2.3.2 Antenna-Based Frequency-Variation Resonant Sensors -- 2.4 Advantages and Drawbacks of Frequency-Variation Sensors -- References -- Chapter 3 Phase-Variation Sensors -- 3.1 General Working Principle of Phase-Variation Sensors -- 3.2 Transmission-Line Phase-Variation Sensors -- 3.2.1 Transmission-Mode Sensors -- 3.2.1.1 Transmission-Mode Four-Port Differential Sensors -- 3.2.1.2 Two-Port Sensors Based on Differential-Mode to Common-Mode Conversion Detectors and Sensitivity Enhancement -- 3.2.2 Reflective-Mode Sensors -- 3.2.2.1 Sensitivity Enhancement by Means of Step-Impedance Open-Ended Lines -- 3.2.2.2 Highly Sensitive Dielectric Constant Sensors -- 3.2.2.3 Displacement Sensors -- 3.2.2.4 Reflective-Mode Differential Sensors -- 3.3 Resonant-Type Phase-Variation Sensors -- 3.3.1 Reflective-Mode Sensors Based on Resonant Sensing Elements -- 3.3.2 Angular Displacement Sensors -- 3.3.2.1 Cross-Polarization in Split Ring Resonator (SRR) and Complementary SRR (CSRR) Loaded Lines -- 3.3.2.2 Slot-Line/SRR Configuration -- 3.3.2.3 Microstrip-Line/CSRR Configuration -- 3.4 Phase-Variation Sensors Based on Artificial Transmission Lines -- 3.4.1 Sensors Based on Slow-Wave Transmission Lines -- 3.4.1.1 Sensing Through the Host Line -- 3.4.1.2 Sensing Through the Patch Capacitors.
3.4.2 Sensors Based on Composite Right-/Left-Handed (CRLH) Lines -- 3.4.3 Sensors Based on Electro-Inductive Wave (EIW) Transmission Lines -- 3.5 Advantages and Drawbacks of Phase-Variation Sensors -- References -- Chapter 4 Coupling-Modulation Sensors -- 4.1 Symmetry Properties in Transmission Lines Loaded with Single Symmetric Resonators -- 4.2 Working Principle of Coupling-Modulation Sensors -- 4.3 Displacement and Velocity Coupling-Modulation Sensors -- 4.3.1 One-Dimensional and Two-Dimensional Linear Displacement Sensors -- 4.3.2 Angular Displacement and Velocity Sensors -- 4.3.2.1 Axial Configuration and Analysis -- 4.3.2.2 Edge Configuration Electromagnetic Rotary Encoders -- 4.3.3 Electromagnetic Linear Encoders -- 4.3.3.1 Strategy for Synchronous Reading Quasi-Absolute Encoders -- 4.3.3.2 Application to Motion Control -- 4.4 Coupling-Modulation Sensors for Dielectric Characterization -- 4.5 Advantages and Drawbacks of Coupling-Modulation Sensors -- References -- Chapter 5 Frequency-Splitting Sensors -- 5.1 Working Principle of Frequency-Splitting Sensors -- 5.2 Transmission Lines Loaded with Pairs of Coupled Resonators -- 5.2.1 CPW Transmission Lines Loaded with a Pair of Coupled SRRs -- 5.2.2 Microstrip Transmission Lines Loaded with a Pair of Coupled CSRRs -- 5.2.3 Microstrip Transmission Lines Loaded with a Pair of Coupled SIRs -- 5.3 Frequency-Splitting Sensors Based on Cascaded Resonators -- 5.4 Frequency-Splitting Sensors Based on the Splitter/Combiner Configuration -- 5.4.1 CSRR-Based Splitter/Combiner Sensor: Analysis and Application to Dielectric Characterization of Solids -- 5.4.2 Microfluidic SRR-Based Splitter/Combiner Frequency-Splitting Sensor -- 5.5 Other Approaches for Coupling Cancelation in Frequency-Splitting Sensors -- 5.5.1 MLC-Based Frequency-Splitting Sensor.
5.5.2 SRR-Based Frequency-Splitting Sensor Implemented in Microstrip Technology -- 5.6 Other Frequency-Splitting Sensors -- 5.6.1 Frequency-Splitting Sensors Operating in Bandpass Configuration -- 5.6.2 Frequency-Splitting Sensors for Two-Dimensional Alignment and Displacement Measurements -- 5.7 Advantages and Drawbacks of Frequency-Splitting Sensors -- References -- Chapter 6 Differential-Mode Sensors -- 6.1 The Differential-Mode Sensor Concept -- 6.2 Differential Sensors Based on the Measurement of the Cross-Mode Transmission Coefficient -- 6.2.1 Working Principle -- 6.2.2 Examples and Applications -- 6.2.2.1 Microfluidic Sensor Based on Open Complementary Split-Ring Resonators (OCSRRs) and Application to Complex Permittivity and Electrolyte Concentration Measurements in Liquids -- 6.2.2.2 Microfluidic Sensor Based on SRRs and Application to Electrolyte Concentration Measurements in Aqueous Solutions -- 6.2.2.3 Microfluidic Sensor Based on DB-DGS Resonators and Application to Electrolyte Concentration Measurements in Aqueous Solutions -- 6.2.2.4 Prototype for Measuring Electrolyte Content in Urine Samples -- 6.3 Reflective-Mode Differential Sensors Based on the Measurement of the Cross-Mode Reflection Coefficient -- 6.4 Other Differential Sensors -- 6.5 Advantages and Drawbacks of Differential-Mode Sensors -- References -- Chapter 7 RFID Sensors for IoT Applications -- 7.1 Fundamentals of RFID -- 7.2 Strategies for RFID Sensing -- 7.2.1 Chip-Based RFID Sensors -- 7.2.1.1 Electronic Sensors -- 7.2.1.2 Electromagnetic Sensors -- 7.2.2 Chipless-RFID Sensors -- 7.2.2.1 Time-Domain Sensors -- 7.2.2.2 Frequency-Domain Sensors -- 7.3 Materials and Fabrication Techniques -- 7.4 Applications -- 7.4.1 Healthcare, Wearables, and Implants -- 7.4.2 Food, Smart Packaging, and Agriculture.
7.4.3 Civil Engineering: Structural Health Monitoring (SHM) -- 7.4.4 Automotive Industry, Smart Cities, and Space -- 7.5 Commercial Solutions, Limitations, and Future Prospects -- References -- Chapter 8 Comparative Analysis and Concluding Remarks -- Index -- EULA.
Record Nr. UNINA-9910643365903321
Martín Ferran <1965->  
Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Planar microwave sensors / / Ferran Martín [and three others]
Planar microwave sensors / / Ferran Martín [and three others]
Autore Martín Ferran <1965->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2023]
Descrizione fisica 1 online resource (483 pages)
Disciplina 621.3813
Collana IEEE Press
Soggetto topico Microwave detectors
ISBN 1-119-81106-6
1-119-81104-X
1-119-81105-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- About the Authors -- List of Acronyms -- Chapter 1 Introduction to Planar Microwave Sensors -- 1.1 Sensor Performance Indicators, Classification Criteria, and General Overview of Sensing Technologies -- 1.1.1 Performance Indicators -- 1.1.2 Sensors' Classification Criteria -- 1.1.3 Sensing Technologies -- 1.1.3.1 Optical Sensors -- 1.1.3.2 Magnetic Sensors -- 1.1.3.3 Acoustic Sensors -- 1.1.3.4 Mechanical Sensors -- 1.1.3.5 Electric Sensors -- 1.2 Microwave Sensors -- 1.2.1 Remote Sensing: RADARs and Radiometers -- 1.2.2 Sensors for In Situ Measurement of Physical Parameters and Material Properties: Non-remote Sensors -- 1.2.2.1 Classification of Non-remote Microwave Sensors -- 1.2.2.2 Resonant Cavity Sensors -- 1.2.2.3 The Nicolson-Ross-Weir (NRW) Method -- 1.2.2.4 Coaxial Probe Sensors -- 1.2.2.5 Planar Sensors -- 1.3 Classification of Planar Microwave Sensors -- 1.3.1 Contact and Contactless Sensors -- 1.3.2 Wired and Wireless Sensors -- 1.3.3 Single-Ended and Differential-Mode Sensors -- 1.3.4 Resonant and Nonresonant Sensors -- 1.3.5 Reflective-Mode and Transmission-Mode Sensors -- 1.3.6 Sensor Classification by Frequency of Operation -- 1.3.7 Sensor Classification by Application -- 1.3.8 Sensor Classification by Working Principle -- 1.3.8.1 Frequency-Variation Sensors -- 1.3.8.2 Phase-Variation Sensors -- 1.3.8.3 Coupling-Modulation Sensors -- 1.3.8.4 Frequency-Splitting Sensors -- 1.3.8.5 Differential-Mode Sensors -- 1.3.8.6 RFID Sensors -- 1.4 Comparison of Planar Microwave Sensors with Other Sensing Technologies -- References -- Chapter 2 Frequency-Variation Sensors -- 2.1 General Working Principle of Frequency-Variation Sensors -- 2.2 Transmission-Line Resonant Sensors -- 2.2.1 Planar Resonant Elements for Sensing.
2.2.1.1 Semi-Lumped Metallic Resonators -- 2.2.1.2 Semi-Lumped Slotted Resonators -- 2.2.2 Sensitivity Analysis -- 2.2.3 Sensors for Dielectric Characterization -- 2.2.3.1 CSRR-Based Microstrip Sensor -- 2.2.3.2 DB-DGS-Based Microstrip Sensor -- 2.2.4 Measuring Material and Liquid Composition -- 2.2.5 Displacement Sensors -- 2.2.6 Sensor Arrays for Biomedical Analysis -- 2.2.7 Multifrequency Sensing for Selective Determination of Material Composition -- 2.3 Other Frequency-Variation Resonant Sensors -- 2.3.1 One-Port Reflective-Mode Submersible Sensors -- 2.3.2 Antenna-Based Frequency-Variation Resonant Sensors -- 2.4 Advantages and Drawbacks of Frequency-Variation Sensors -- References -- Chapter 3 Phase-Variation Sensors -- 3.1 General Working Principle of Phase-Variation Sensors -- 3.2 Transmission-Line Phase-Variation Sensors -- 3.2.1 Transmission-Mode Sensors -- 3.2.1.1 Transmission-Mode Four-Port Differential Sensors -- 3.2.1.2 Two-Port Sensors Based on Differential-Mode to Common-Mode Conversion Detectors and Sensitivity Enhancement -- 3.2.2 Reflective-Mode Sensors -- 3.2.2.1 Sensitivity Enhancement by Means of Step-Impedance Open-Ended Lines -- 3.2.2.2 Highly Sensitive Dielectric Constant Sensors -- 3.2.2.3 Displacement Sensors -- 3.2.2.4 Reflective-Mode Differential Sensors -- 3.3 Resonant-Type Phase-Variation Sensors -- 3.3.1 Reflective-Mode Sensors Based on Resonant Sensing Elements -- 3.3.2 Angular Displacement Sensors -- 3.3.2.1 Cross-Polarization in Split Ring Resonator (SRR) and Complementary SRR (CSRR) Loaded Lines -- 3.3.2.2 Slot-Line/SRR Configuration -- 3.3.2.3 Microstrip-Line/CSRR Configuration -- 3.4 Phase-Variation Sensors Based on Artificial Transmission Lines -- 3.4.1 Sensors Based on Slow-Wave Transmission Lines -- 3.4.1.1 Sensing Through the Host Line -- 3.4.1.2 Sensing Through the Patch Capacitors.
3.4.2 Sensors Based on Composite Right-/Left-Handed (CRLH) Lines -- 3.4.3 Sensors Based on Electro-Inductive Wave (EIW) Transmission Lines -- 3.5 Advantages and Drawbacks of Phase-Variation Sensors -- References -- Chapter 4 Coupling-Modulation Sensors -- 4.1 Symmetry Properties in Transmission Lines Loaded with Single Symmetric Resonators -- 4.2 Working Principle of Coupling-Modulation Sensors -- 4.3 Displacement and Velocity Coupling-Modulation Sensors -- 4.3.1 One-Dimensional and Two-Dimensional Linear Displacement Sensors -- 4.3.2 Angular Displacement and Velocity Sensors -- 4.3.2.1 Axial Configuration and Analysis -- 4.3.2.2 Edge Configuration Electromagnetic Rotary Encoders -- 4.3.3 Electromagnetic Linear Encoders -- 4.3.3.1 Strategy for Synchronous Reading Quasi-Absolute Encoders -- 4.3.3.2 Application to Motion Control -- 4.4 Coupling-Modulation Sensors for Dielectric Characterization -- 4.5 Advantages and Drawbacks of Coupling-Modulation Sensors -- References -- Chapter 5 Frequency-Splitting Sensors -- 5.1 Working Principle of Frequency-Splitting Sensors -- 5.2 Transmission Lines Loaded with Pairs of Coupled Resonators -- 5.2.1 CPW Transmission Lines Loaded with a Pair of Coupled SRRs -- 5.2.2 Microstrip Transmission Lines Loaded with a Pair of Coupled CSRRs -- 5.2.3 Microstrip Transmission Lines Loaded with a Pair of Coupled SIRs -- 5.3 Frequency-Splitting Sensors Based on Cascaded Resonators -- 5.4 Frequency-Splitting Sensors Based on the Splitter/Combiner Configuration -- 5.4.1 CSRR-Based Splitter/Combiner Sensor: Analysis and Application to Dielectric Characterization of Solids -- 5.4.2 Microfluidic SRR-Based Splitter/Combiner Frequency-Splitting Sensor -- 5.5 Other Approaches for Coupling Cancelation in Frequency-Splitting Sensors -- 5.5.1 MLC-Based Frequency-Splitting Sensor.
5.5.2 SRR-Based Frequency-Splitting Sensor Implemented in Microstrip Technology -- 5.6 Other Frequency-Splitting Sensors -- 5.6.1 Frequency-Splitting Sensors Operating in Bandpass Configuration -- 5.6.2 Frequency-Splitting Sensors for Two-Dimensional Alignment and Displacement Measurements -- 5.7 Advantages and Drawbacks of Frequency-Splitting Sensors -- References -- Chapter 6 Differential-Mode Sensors -- 6.1 The Differential-Mode Sensor Concept -- 6.2 Differential Sensors Based on the Measurement of the Cross-Mode Transmission Coefficient -- 6.2.1 Working Principle -- 6.2.2 Examples and Applications -- 6.2.2.1 Microfluidic Sensor Based on Open Complementary Split-Ring Resonators (OCSRRs) and Application to Complex Permittivity and Electrolyte Concentration Measurements in Liquids -- 6.2.2.2 Microfluidic Sensor Based on SRRs and Application to Electrolyte Concentration Measurements in Aqueous Solutions -- 6.2.2.3 Microfluidic Sensor Based on DB-DGS Resonators and Application to Electrolyte Concentration Measurements in Aqueous Solutions -- 6.2.2.4 Prototype for Measuring Electrolyte Content in Urine Samples -- 6.3 Reflective-Mode Differential Sensors Based on the Measurement of the Cross-Mode Reflection Coefficient -- 6.4 Other Differential Sensors -- 6.5 Advantages and Drawbacks of Differential-Mode Sensors -- References -- Chapter 7 RFID Sensors for IoT Applications -- 7.1 Fundamentals of RFID -- 7.2 Strategies for RFID Sensing -- 7.2.1 Chip-Based RFID Sensors -- 7.2.1.1 Electronic Sensors -- 7.2.1.2 Electromagnetic Sensors -- 7.2.2 Chipless-RFID Sensors -- 7.2.2.1 Time-Domain Sensors -- 7.2.2.2 Frequency-Domain Sensors -- 7.3 Materials and Fabrication Techniques -- 7.4 Applications -- 7.4.1 Healthcare, Wearables, and Implants -- 7.4.2 Food, Smart Packaging, and Agriculture.
7.4.3 Civil Engineering: Structural Health Monitoring (SHM) -- 7.4.4 Automotive Industry, Smart Cities, and Space -- 7.5 Commercial Solutions, Limitations, and Future Prospects -- References -- Chapter 8 Comparative Analysis and Concluding Remarks -- Index -- EULA.
Record Nr. UNINA-9910829947303321
Martín Ferran <1965->  
Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui