top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational Pathology and Ophthalmic Medical Image Analysis [[electronic resource] ] : First International Workshop, COMPAY 2018, and 5th International Workshop, OMIA 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16 - 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Francesco Ciompi, Yanwu Xu, Anne Martel, Lena Maier-Hein, Nasir Rajpoot, Jeroen van der Laak, Mitko Veta, Stephen McKenna, David Snead, Emanuele Trucco, Mona K. Garvin, Xin Jan Chen, Hrvoje Bogunovic
Computational Pathology and Ophthalmic Medical Image Analysis [[electronic resource] ] : First International Workshop, COMPAY 2018, and 5th International Workshop, OMIA 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16 - 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Francesco Ciompi, Yanwu Xu, Anne Martel, Lena Maier-Hein, Nasir Rajpoot, Jeroen van der Laak, Mitko Veta, Stephen McKenna, David Snead, Emanuele Trucco, Mona K. Garvin, Xin Jan Chen, Hrvoje Bogunovic
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XVII, 347 p. 135 illus.)
Disciplina 617.7
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Artificial intelligence
Arithmetic and logic units, Computer
Mathematical statistics
Pattern recognition
Image Processing and Computer Vision
Artificial Intelligence
Arithmetic and Logic Structures
Probability and Statistics in Computer Science
Pattern Recognition
ISBN 3-030-00949-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Improving Accuracy of Nuclei Segmentation by Reducing Histological Image Variability -- Multi-Resolution Networks for Semantic Segmentation in Whole Slide Images -- Improving High Resolution Histology Image Classification with Deep Spatial Fusion Network -- Construction of a Generative Model of H&E Stained Pathology Images of Pancreas Tumors Conditioned by a Voxel Value of MRI Image -- Accurate 3D reconstruction of a whole pancreatic cancer tumor from pathology images with different stains -- Role of Task Complexity and Training in Crowdsourced Image Annotation -- Capturing global spatial context for accurate cell classification in skin cancer histology -- Exploiting Multiple Color Representations to Improve Colon Cancer Detection in Whole Slide H&E Stains -- Leveraging Unlabeled Whole-Slide-Images for Mitosis Detection -- Evaluating Out-of-the-box Methods for the Classification of Hematopoietic Cells in Images of Stained Bone Marrow -- DeepCerv: Deep neural network for segmentation free robust cervical cell classification -- Whole slide image registration for the study of tumor heterogeneity -- Modality Conversion from Pathological Image to Ultrasonic Image Using Convolutional Neural Network -- Structure instance segmentation in renal tissue: a case study on tubular immune cell detection -- Cellular Community Detection for Tissue Phenotyping in Histology Images -- Automatic Detection of Tumor Budding in Colorectal Carcinoma with Deep Learning -- Significance of Hyperparameter Optimization for Metastasis Detection in Breast Histology Images -- Image Magnification Regression Using DenseNet for Exploiting Histopathology Open Access Content -- Uncertainty Driven Pooling Network for Microvessel Segmentation in Routine Histology Images -- Ocular Structures Segmentation from Multi-sequences MRI using 3D Unet with Fully Connected CRFs -- Classification of Findings with Localized Lesions in Fundoscopic Images using a Regionally Guided CNN -- Segmentation of Corneal Nerves Using a U-Net-based Convolutional Neural Network -- Automatic Pigmentation Grading of the Trabecular Meshwork in Gonioscopic Images -- Large Receptive Field Fully Convolutional Network for Semantic Segmentation of Retinal Vasculature in Fundus Images -- Explaining Convolutional Neural Networks for Area Estimation of Choroidal Neovascularization via Genetic Programming -- Joint Segmentation and Uncertainty Visualization of Retinal Layers in Optical Coherence Tomography Images using Bayesian Deep Learning -- cGAN-based lacquer cracks segmentation in ICGA image -- Localizing Optic Disc and Cup for Glaucoma Screening via Deep Object Detection Networks -- Fundus Image Quality-guided Diabetic Retinopathy Grading -- DeepDisc: Optic Disc Segmentation based on Atrous Convolution and Spatial Pyramid Pooling -- Large-scale Left and Right Eye Classification in Retinal Images -- Automatic Segmentation of Cortex and Nucleus in Anterior Segment OCT Images -- Local Estimation of the Degree of Optic Disc Swelling from Color Fundus Photography -- Visual Field based Automatic Diagnosis of Glaucoma Using Deep Convolutional Neural Network -- Towards standardization of retinal vascular measurements: on the effect of image centering -- Feasibility study of Subfoveal Choroidal Thickness Changes in Spectral-Domain Optical Coherence Tomography Measurements of Macular Telangiectasia Type 2 -- Segmentation of retinal layers in OCT images of the mouse eye utilizing polarization contrast -- Glaucoma Diagnosis from Eye Fundus Images Based on Deep Morphometric Feature Estimation -- 2D Modeling and Correction of Fan-beam Scan Geometry in OCT -- A Bottom-up Saliency Estimation Approach for Neonatal Retinal Images.
Record Nr. UNISA-996466199903316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Computational Pathology and Ophthalmic Medical Image Analysis : First International Workshop, COMPAY 2018, and 5th International Workshop, OMIA 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16 - 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Francesco Ciompi, Yanwu Xu, Anne Martel, Lena Maier-Hein, Nasir Rajpoot, Jeroen van der Laak, Mitko Veta, Stephen McKenna, David Snead, Emanuele Trucco, Mona K. Garvin, Xin Jan Chen, Hrvoje Bogunovic
Computational Pathology and Ophthalmic Medical Image Analysis : First International Workshop, COMPAY 2018, and 5th International Workshop, OMIA 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16 - 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Francesco Ciompi, Yanwu Xu, Anne Martel, Lena Maier-Hein, Nasir Rajpoot, Jeroen van der Laak, Mitko Veta, Stephen McKenna, David Snead, Emanuele Trucco, Mona K. Garvin, Xin Jan Chen, Hrvoje Bogunovic
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XVII, 347 p. 135 illus.)
Disciplina 617.7
616.07
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Artificial intelligence
Computer arithmetic and logic units
Mathematical statistics
Pattern perception
Image Processing and Computer Vision
Artificial Intelligence
Arithmetic and Logic Structures
Probability and Statistics in Computer Science
Pattern Recognition
ISBN 3-030-00949-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Improving Accuracy of Nuclei Segmentation by Reducing Histological Image Variability -- Multi-Resolution Networks for Semantic Segmentation in Whole Slide Images -- Improving High Resolution Histology Image Classification with Deep Spatial Fusion Network -- Construction of a Generative Model of H&E Stained Pathology Images of Pancreas Tumors Conditioned by a Voxel Value of MRI Image -- Accurate 3D reconstruction of a whole pancreatic cancer tumor from pathology images with different stains -- Role of Task Complexity and Training in Crowdsourced Image Annotation -- Capturing global spatial context for accurate cell classification in skin cancer histology -- Exploiting Multiple Color Representations to Improve Colon Cancer Detection in Whole Slide H&E Stains -- Leveraging Unlabeled Whole-Slide-Images for Mitosis Detection -- Evaluating Out-of-the-box Methods for the Classification of Hematopoietic Cells in Images of Stained Bone Marrow -- DeepCerv: Deep neural network for segmentation free robust cervical cell classification -- Whole slide image registration for the study of tumor heterogeneity -- Modality Conversion from Pathological Image to Ultrasonic Image Using Convolutional Neural Network -- Structure instance segmentation in renal tissue: a case study on tubular immune cell detection -- Cellular Community Detection for Tissue Phenotyping in Histology Images -- Automatic Detection of Tumor Budding in Colorectal Carcinoma with Deep Learning -- Significance of Hyperparameter Optimization for Metastasis Detection in Breast Histology Images -- Image Magnification Regression Using DenseNet for Exploiting Histopathology Open Access Content -- Uncertainty Driven Pooling Network for Microvessel Segmentation in Routine Histology Images -- Ocular Structures Segmentation from Multi-sequences MRI using 3D Unet with Fully Connected CRFs -- Classification of Findings with Localized Lesions in Fundoscopic Images using a Regionally Guided CNN -- Segmentation of Corneal Nerves Using a U-Net-based Convolutional Neural Network -- Automatic Pigmentation Grading of the Trabecular Meshwork in Gonioscopic Images -- Large Receptive Field Fully Convolutional Network for Semantic Segmentation of Retinal Vasculature in Fundus Images -- Explaining Convolutional Neural Networks for Area Estimation of Choroidal Neovascularization via Genetic Programming -- Joint Segmentation and Uncertainty Visualization of Retinal Layers in Optical Coherence Tomography Images using Bayesian Deep Learning -- cGAN-based lacquer cracks segmentation in ICGA image -- Localizing Optic Disc and Cup for Glaucoma Screening via Deep Object Detection Networks -- Fundus Image Quality-guided Diabetic Retinopathy Grading -- DeepDisc: Optic Disc Segmentation based on Atrous Convolution and Spatial Pyramid Pooling -- Large-scale Left and Right Eye Classification in Retinal Images -- Automatic Segmentation of Cortex and Nucleus in Anterior Segment OCT Images -- Local Estimation of the Degree of Optic Disc Swelling from Color Fundus Photography -- Visual Field based Automatic Diagnosis of Glaucoma Using Deep Convolutional Neural Network -- Towards standardization of retinal vascular measurements: on the effect of image centering -- Feasibility study of Subfoveal Choroidal Thickness Changes in Spectral-Domain Optical Coherence Tomography Measurements of Macular Telangiectasia Type 2 -- Segmentation of retinal layers in OCT images of the mouse eye utilizing polarization contrast -- Glaucoma Diagnosis from Eye Fundus Images Based on Deep Morphometric Feature Estimation -- 2D Modeling and Correction of Fan-beam Scan Geometry in OCT -- A Bottom-up Saliency Estimation Approach for Neonatal Retinal Images.
Record Nr. UNINA-9910349405203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support [[electronic resource] ] : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Gustavo Carneiro, Tanveer Syeda-Mahmood, Anne Martel, Lena Maier-Hein, João Manuel R.S. Tavares, Andrew Bradley, João Paulo Papa, Vasileios Belagiannis, Jacinto C. Nascimento, Zhi Lu, Sailesh Conjeti, Mehdi Moradi, Hayit Greenspan, Anant Madabhushi
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support [[electronic resource] ] : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Gustavo Carneiro, Tanveer Syeda-Mahmood, Anne Martel, Lena Maier-Hein, João Manuel R.S. Tavares, Andrew Bradley, João Paulo Papa, Vasileios Belagiannis, Jacinto C. Nascimento, Zhi Lu, Sailesh Conjeti, Mehdi Moradi, Hayit Greenspan, Anant Madabhushi
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XVII, 387 p. 159 illus.)
Disciplina 610.285
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Artificial intelligence
Health informatics
Education—Data processing
Application software
Computer security
Artificial Intelligence
Health Informatics
Computers and Education
Computer Appl. in Social and Behavioral Sciences
Systems and Data Security
ISBN 3-030-00889-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Semi-Automated Extraction of Crohns Disease MR Imaging Markers using a 3D Residual CNN with Distance Prior -- Weakly Supervised Localisation for Fetal Ultrasound Images -- Learning to Decode 7T-like MR Image Reconstruction from 3T MR Images -- Segmentation of Head and Neck Organs-At-Risk in Longitudinal CT Scans Combining Deformable Registrations and Convolutional Neural Networks -- Iterative Segmentation from Limited Training Data: Applications to Congenital Heart Disease -- Contextual Additive Networks to Efficiently Boost 3D Image Segmentations -- Longitudinal detection of radiological abnormalities with time-modulated LSTM -- SCAN: Structure Correcting Adversarial Network for Organ Segmentation in Chest X-rays -- Active Learning for Segmentation by Optimizing Content Information for Maximal Entropy -- Rapid Training Data Generation for Tissue Segmentation Using Global Approximate Block-Matching with Self-Organizing Maps -- Reinforced Auto-Zoom Net: Towards Accurate and Fast Breast Cancer Segmentation in Whole-slide Images -- Deep semi-supervised segmentation with weight-averaged consistency targets -- Focal Dice Loss and Image Dilation for Brain Tumor Segmentation -- Automatic Detection of Patients with a High Risk of Systolic Cardiac Failure in Echocardiography -- Unsupervised feature learning for outlier detection with stacked convolutional autoencoders, siamese networks and Wasserstein autoencoders: application to epilepsy detection -- Automatic myocardial strain imaging in echocardiography using deep learning -- 3D Convolutional Neural Networks for Classification of Functional Connectomes -- Computed Tomography Image Enhancement using 3D Convolutional Neural Network -- Deep Particle Tracker: Automatic Tracking of Particles in Fluorescence Microscopy Images Using Deep Learning -- A Unified Framework Integrating Recurrent Fully-convolutional Networks and Optical Flow for Segmentation of the Left Ventricle in Echocardiography Data -- Learning Optimal Deep Projection of 18 F-FDG PET Imaging for Early Differential Diagnosis of Parkinsonian Syndromes -- Learning to Segment Medical Images with Scribble-Supervision Alone -- Unsupervised Probabilistic Deformation Modeling for Robust Diffeomorphic Registration -- TreeNet: Multi-Loss Deep Learning Network to Predict Branch Direction for Extracting 3D Anatomical Trees -- Active Deep Learning with Fisher Information for Patch-wise Semantic Segmentation -- UOLO - automatic object detection and segmentation in biomedical images -- Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks -- Multi-Scale Residual Network with Two Channels of Raw CT Image and Its Differential Excitation Component for Emphysema Classification -- Nonlinear adaptively learned optimization for object localization in 3D medical images -- Automatic Segmentation of Pulmonary Lobes Using a Progressive Dense V-Network -- UNet++: A Nested U-Net Architecture for Medical Image Segmentation -- MTMR-Net: Multi-Task Deep Learning with Margin Ranking Loss for Lung Nodule Analysis -- PIMMS: Permutation Invariant Multi-Modal Segmentation -- Handling Missing Annotations for Semantic Segmentation with Deep ConvNets -- 3D Deep Affine-Invariant Shape Learning for Brain MR Image Segmentation -- ScarGAN: Chained Generative Adversarial Networks to Simulate Pathological Tissue on Cardiovascular MR Scans -- Unpaired Deep Cross-modality Synthesis with Fast Training -- Monte-Carlo Sampling applied to Multiple Instance Learning for Histological Image Classification -- Unpaired Brain MR-to-CT Synthesis using a Structure-Constrained CycleGAN -- A Multi-Scale Multiple Sclerosis Lesion Change Detection in a Multi-Sequence MRI -- Multi-task Sparse Low-rank Learning for Multi-classification of Parkinson’s Disease -- Optic Disc segmentation in Retinal Fundus Images using Fully Convolutional Network and Removal of False-positives Based on Shape Features -- Integrating deformable modeling with 3D deep neural network segmentation.
Record Nr. UNISA-996466201603316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Gustavo Carneiro, Tanveer Syeda-Mahmood, Anne Martel, Lena Maier-Hein, João Manuel R.S. Tavares, Andrew Bradley, João Paulo Papa, Vasileios Belagiannis, Jacinto C. Nascimento, Zhi Lu, Sailesh Conjeti, Mehdi Moradi, Hayit Greenspan, Anant Madabhushi
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Gustavo Carneiro, Tanveer Syeda-Mahmood, Anne Martel, Lena Maier-Hein, João Manuel R.S. Tavares, Andrew Bradley, João Paulo Papa, Vasileios Belagiannis, Jacinto C. Nascimento, Zhi Lu, Sailesh Conjeti, Mehdi Moradi, Hayit Greenspan, Anant Madabhushi
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XVII, 387 p. 159 illus.)
Disciplina 610.285
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Artificial intelligence
Health informatics
Education—Data processing
Application software
Computer security
Artificial Intelligence
Health Informatics
Computers and Education
Computer Appl. in Social and Behavioral Sciences
Systems and Data Security
ISBN 3-030-00889-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Semi-Automated Extraction of Crohns Disease MR Imaging Markers using a 3D Residual CNN with Distance Prior -- Weakly Supervised Localisation for Fetal Ultrasound Images -- Learning to Decode 7T-like MR Image Reconstruction from 3T MR Images -- Segmentation of Head and Neck Organs-At-Risk in Longitudinal CT Scans Combining Deformable Registrations and Convolutional Neural Networks -- Iterative Segmentation from Limited Training Data: Applications to Congenital Heart Disease -- Contextual Additive Networks to Efficiently Boost 3D Image Segmentations -- Longitudinal detection of radiological abnormalities with time-modulated LSTM -- SCAN: Structure Correcting Adversarial Network for Organ Segmentation in Chest X-rays -- Active Learning for Segmentation by Optimizing Content Information for Maximal Entropy -- Rapid Training Data Generation for Tissue Segmentation Using Global Approximate Block-Matching with Self-Organizing Maps -- Reinforced Auto-Zoom Net: Towards Accurate and Fast Breast Cancer Segmentation in Whole-slide Images -- Deep semi-supervised segmentation with weight-averaged consistency targets -- Focal Dice Loss and Image Dilation for Brain Tumor Segmentation -- Automatic Detection of Patients with a High Risk of Systolic Cardiac Failure in Echocardiography -- Unsupervised feature learning for outlier detection with stacked convolutional autoencoders, siamese networks and Wasserstein autoencoders: application to epilepsy detection -- Automatic myocardial strain imaging in echocardiography using deep learning -- 3D Convolutional Neural Networks for Classification of Functional Connectomes -- Computed Tomography Image Enhancement using 3D Convolutional Neural Network -- Deep Particle Tracker: Automatic Tracking of Particles in Fluorescence Microscopy Images Using Deep Learning -- A Unified Framework Integrating Recurrent Fully-convolutional Networks and Optical Flow for Segmentation of the Left Ventricle in Echocardiography Data -- Learning Optimal Deep Projection of 18 F-FDG PET Imaging for Early Differential Diagnosis of Parkinsonian Syndromes -- Learning to Segment Medical Images with Scribble-Supervision Alone -- Unsupervised Probabilistic Deformation Modeling for Robust Diffeomorphic Registration -- TreeNet: Multi-Loss Deep Learning Network to Predict Branch Direction for Extracting 3D Anatomical Trees -- Active Deep Learning with Fisher Information for Patch-wise Semantic Segmentation -- UOLO - automatic object detection and segmentation in biomedical images -- Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks -- Multi-Scale Residual Network with Two Channels of Raw CT Image and Its Differential Excitation Component for Emphysema Classification -- Nonlinear adaptively learned optimization for object localization in 3D medical images -- Automatic Segmentation of Pulmonary Lobes Using a Progressive Dense V-Network -- UNet++: A Nested U-Net Architecture for Medical Image Segmentation -- MTMR-Net: Multi-Task Deep Learning with Margin Ranking Loss for Lung Nodule Analysis -- PIMMS: Permutation Invariant Multi-Modal Segmentation -- Handling Missing Annotations for Semantic Segmentation with Deep ConvNets -- 3D Deep Affine-Invariant Shape Learning for Brain MR Image Segmentation -- ScarGAN: Chained Generative Adversarial Networks to Simulate Pathological Tissue on Cardiovascular MR Scans -- Unpaired Deep Cross-modality Synthesis with Fast Training -- Monte-Carlo Sampling applied to Multiple Instance Learning for Histological Image Classification -- Unpaired Brain MR-to-CT Synthesis using a Structure-Constrained CycleGAN -- A Multi-Scale Multiple Sclerosis Lesion Change Detection in a Multi-Sequence MRI -- Multi-task Sparse Low-rank Learning for Multi-classification of Parkinson’s Disease -- Optic Disc segmentation in Retinal Fundus Images using Fully Convolutional Network and Removal of False-positives Based on Shape Features -- Integrating deformable modeling with 3D deep neural network segmentation.
Record Nr. UNINA-9910349404403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities [[electronic resource] ] : Second International Workshop, GRAIL 2018 and First International Workshop, Beyond MIC 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Enzo Ferrante, Adrian V. Dalca, Anne Martel, Lena Maier-Hein, Sarah Parisot, Aristeidis Sotiras, Bartlomiej Papiez, Mert R. Sabuncu, Li Shen
Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities [[electronic resource] ] : Second International Workshop, GRAIL 2018 and First International Workshop, Beyond MIC 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Enzo Ferrante, Adrian V. Dalca, Anne Martel, Lena Maier-Hein, Sarah Parisot, Aristeidis Sotiras, Bartlomiej Papiez, Mert R. Sabuncu, Li Shen
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XVI, 101 p. 26 illus.)
Disciplina 006.37
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Computer science—Mathematics
Artificial intelligence
Algorithms
Data structures (Computer science)
Image Processing and Computer Vision
Mathematics of Computing
Artificial Intelligence
Algorithm Analysis and Problem Complexity
Data Structures and Information Theory
ISBN 3-030-00689-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Graph Saliency Maps through Spectral Convolutional Networks: Application to Sex Classification with Brain Connectivity -- A Graph Representation and Similarity Measure for Brain Networks with Nodal Features -- Hierarchical Bayesian Networks for Modeling Inter-Class Dependencies: Application to Semi-Supervised Cell Segmentation -- Multi-modal Disease Classification in Incomplete Datasets Using Geometric Matrix Completion -- BrainParcel: A Brain Parcellation Algorithm for Cognitive State Classification -- Modeling Brain Networks with Artificial Neural Networks -- A Bayesian Disease Progression Model for Clinical Trajectories -- Multi-modal brain connectivity study using deep collaborative learning -- Towards Subject and Diagnostic Identifiability in the Alzheimer’s Disease Spectrum based on Functional Connectomes -- Predicting Conversion of Mild Cognitive Impairments to Alzheimer’s Disease and Exploring Impact of Neuroimaging -- Cross-Diagnostic Prediction of Dimensional Psychiatric Phenotypes in Anorexia Nervosa and Body Dysmorphic Disorder Using Multimodal Neuroimaging and Psychometric Data.
Record Nr. UNISA-996466328703316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities : Second International Workshop, GRAIL 2018 and First International Workshop, Beyond MIC 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Enzo Ferrante, Adrian V. Dalca, Anne Martel, Lena Maier-Hein, Sarah Parisot, Aristeidis Sotiras, Bartlomiej Papiez, Mert R. Sabuncu, Li Shen
Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities : Second International Workshop, GRAIL 2018 and First International Workshop, Beyond MIC 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Enzo Ferrante, Adrian V. Dalca, Anne Martel, Lena Maier-Hein, Sarah Parisot, Aristeidis Sotiras, Bartlomiej Papiez, Mert R. Sabuncu, Li Shen
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XVI, 101 p. 26 illus.)
Disciplina 006.37
616.0754
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Computer vision
Computer science - Mathematics
Artificial intelligence
Algorithms
Data structures (Computer science)
Information theory
Computer Vision
Mathematics of Computing
Artificial Intelligence
Data Structures and Information Theory
ISBN 3-030-00689-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Graph Saliency Maps through Spectral Convolutional Networks: Application to Sex Classification with Brain Connectivity -- A Graph Representation and Similarity Measure for Brain Networks with Nodal Features -- Hierarchical Bayesian Networks for Modeling Inter-Class Dependencies: Application to Semi-Supervised Cell Segmentation -- Multi-modal Disease Classification in Incomplete Datasets Using Geometric Matrix Completion -- BrainParcel: A Brain Parcellation Algorithm for Cognitive State Classification -- Modeling Brain Networks with Artificial Neural Networks -- A Bayesian Disease Progression Model for Clinical Trajectories -- Multi-modal brain connectivity study using deep collaborative learning -- Towards Subject and Diagnostic Identifiability in the Alzheimer’s Disease Spectrum based on Functional Connectomes -- Predicting Conversion of Mild Cognitive Impairments to Alzheimer’s Disease and Exploring Impact of Neuroimaging -- Cross-Diagnostic Prediction of Dimensional Psychiatric Phenotypes in Anorexia Nervosa and Body Dysmorphic Disorder Using Multimodal Neuroimaging and Psychometric Data.
Record Nr. UNINA-9910349404203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Image Analysis for Moving Organ, Breast, and Thoracic Images [[electronic resource] ] : Third International Workshop, RAMBO 2018, Fourth International Workshop, BIA 2018, and First International Workshop, TIA 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16 and 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Bernhard Kainz, Gabriel Maicas, Reinhard R. Beichel, Anne Martel, Lena Maier-Hein, Kanwal Bhatia, Tom Vercauteren, Ozan Oktay, Gustavo Carneiro, Andrew P. Bradley, Jacinto Nascimento, Hang Min, Matthew S. Brown, Colin Jacobs, Bianca Lassen-Schmidt, Kensaku Mori, Jens Petersen, Raúl San José Estépar, Alexander Schmidt-Richberg, Catarina Veiga
Image Analysis for Moving Organ, Breast, and Thoracic Images [[electronic resource] ] : Third International Workshop, RAMBO 2018, Fourth International Workshop, BIA 2018, and First International Workshop, TIA 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16 and 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Bernhard Kainz, Gabriel Maicas, Reinhard R. Beichel, Anne Martel, Lena Maier-Hein, Kanwal Bhatia, Tom Vercauteren, Ozan Oktay, Gustavo Carneiro, Andrew P. Bradley, Jacinto Nascimento, Hang Min, Matthew S. Brown, Colin Jacobs, Bianca Lassen-Schmidt, Kensaku Mori, Jens Petersen, Raúl San José Estépar, Alexander Schmidt-Richberg, Catarina Veiga
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (xiv, 350 pages) : illustrations (chiefly color)
Disciplina 616.0754
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Artificial intelligence
Health informatics
Computers
Image Processing and Computer Vision
Artificial Intelligence
Health Informatics
Information Systems and Communication Service
ISBN 3-030-00946-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Resection-based Demons Regularization for Breast Tumor Bed Propagation -- Linear and Deformable Image Registration with 3D Convolutional Neural Networks -- Super Resolution of Cardiac Cine MRI Sequences Using Deep Learning -- Automated CNN-based Reconstruction of Short-Axis Cardiac MR Sequence From Real-Time Image Data -- An Unbiased Groupwise Registration Algorithm for Correcting Motion in Dynamic Contrast-Enhanced Magnetic Resonance Images -- Siamese Network for Dual-View Mammography Mass Matching -- Large-scale Mammography CAD with Deformable Conv-Nets -- Domain Adaptation for Deviating Acquisition Protocols in CNN-based Lesion Classification on Diffusion-Weighted MR Images -- Improved Breast Mass Segmentation in Mammograms with Conditional Residual U-net -- Improving Breast Cancer Detection using Symmetry Information -- Conditional Infilling GANs for Data Augmentation in Mammogram Classification -- A Unified Mammogram Analysis Method via Hybrid Deep Supervision -- Structure-aware Staging for Breast Cancer Metastases -- Reproducible evaluation of registration algorithms for movement correction in dynamic contrast enhancing magnetic resonance imaging for breast cancer diagnosis -- Robust Windowed Harmonic Phase Analysis with a Single Acquisition -- Lung Structures Enhancement in Chest Radiographs via CT based FCNN Training -- Improving the Segmentation of Anatomical Structures in Chest Radiographs using U-Net with an ImageNet Pre-trained Encoder -- Tuberculosis histopathology on x-ray CT -- A CT scan harmonization technique to detect Emphysema and Small Airway Diseases -- Transfer Learning for Segmentation of Injured Lungs using Coarse-to-Fine Convolutional Neural Networks -- High throughput lung and lobar segmentation by 2D and 3D CNN on chest CT with diffuse lung disease -- Multi-Structure Segmentation from Partially Labeled Datasets. Application to Body Composition Measurements on CT scans -- 3D Pulmonary Artery Segmentation from CTA Scans using Deep Learning with Realistic Data Augmentation -- Automatic Airway Segmentation in chest CT using Convolutional Neural Networks -- Detecting Out-of-phase Ventilation Using 4DCT to Improve Radiation Therapy for Lung Cancer -- XeMRI to CT Lung Image Registration Enhanced with Personalized 4DCT-derived Motion Model -- Rigid Lens – Locally Rigid Approximations of Deformable Registration for Change Assessment in Thorax-Abdomen CT Follow-Up Scan -- Diffeomorphic Lung Registration using Deep CNNs and Reinforced Learning -- Transfer learning approach to predict biopsy-confirmed malignancy of lung nodules from imaging data: a pilot study -- Convolutional Neural Network Based COPD and Emphysema Classifications Are Predictive of Lung Cancer Diagnosis -- Towards an automatic lung cancer screening system in low dose computed tomography -- Automatic classification of centrilobular emphysema on CT using deep learning: comparison with visual scoring -- On the Relevance of the Loss Function in the Agatston Score Regression from non-ECG Gated CT Scans -- Accurate Measurement of Airway Morphology on Chest CT images.
Record Nr. UNISA-996466186203316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Image Analysis for Moving Organ, Breast, and Thoracic Images : Third International Workshop, RAMBO 2018, Fourth International Workshop, BIA 2018, and First International Workshop, TIA 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16 and 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Bernhard Kainz, Gabriel Maicas, Reinhard R. Beichel, Anne Martel, Lena Maier-Hein, Kanwal Bhatia, Tom Vercauteren, Ozan Oktay, Gustavo Carneiro, Andrew P. Bradley, Jacinto Nascimento, Hang Min, Matthew S. Brown, Colin Jacobs, Bianca Lassen-Schmidt, Kensaku Mori, Jens Petersen, Raúl San José Estépar, Alexander Schmidt-Richberg, Catarina Veiga
Image Analysis for Moving Organ, Breast, and Thoracic Images : Third International Workshop, RAMBO 2018, Fourth International Workshop, BIA 2018, and First International Workshop, TIA 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16 and 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Bernhard Kainz, Gabriel Maicas, Reinhard R. Beichel, Anne Martel, Lena Maier-Hein, Kanwal Bhatia, Tom Vercauteren, Ozan Oktay, Gustavo Carneiro, Andrew P. Bradley, Jacinto Nascimento, Hang Min, Matthew S. Brown, Colin Jacobs, Bianca Lassen-Schmidt, Kensaku Mori, Jens Petersen, Raúl San José Estépar, Alexander Schmidt-Richberg, Catarina Veiga
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (xiv, 350 pages) : illustrations (chiefly color)
Disciplina 616.0754
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Artificial intelligence
Health informatics
Computers
Image Processing and Computer Vision
Artificial Intelligence
Health Informatics
Information Systems and Communication Service
ISBN 3-030-00946-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Resection-based Demons Regularization for Breast Tumor Bed Propagation -- Linear and Deformable Image Registration with 3D Convolutional Neural Networks -- Super Resolution of Cardiac Cine MRI Sequences Using Deep Learning -- Automated CNN-based Reconstruction of Short-Axis Cardiac MR Sequence From Real-Time Image Data -- An Unbiased Groupwise Registration Algorithm for Correcting Motion in Dynamic Contrast-Enhanced Magnetic Resonance Images -- Siamese Network for Dual-View Mammography Mass Matching -- Large-scale Mammography CAD with Deformable Conv-Nets -- Domain Adaptation for Deviating Acquisition Protocols in CNN-based Lesion Classification on Diffusion-Weighted MR Images -- Improved Breast Mass Segmentation in Mammograms with Conditional Residual U-net -- Improving Breast Cancer Detection using Symmetry Information -- Conditional Infilling GANs for Data Augmentation in Mammogram Classification -- A Unified Mammogram Analysis Method via Hybrid Deep Supervision -- Structure-aware Staging for Breast Cancer Metastases -- Reproducible evaluation of registration algorithms for movement correction in dynamic contrast enhancing magnetic resonance imaging for breast cancer diagnosis -- Robust Windowed Harmonic Phase Analysis with a Single Acquisition -- Lung Structures Enhancement in Chest Radiographs via CT based FCNN Training -- Improving the Segmentation of Anatomical Structures in Chest Radiographs using U-Net with an ImageNet Pre-trained Encoder -- Tuberculosis histopathology on x-ray CT -- A CT scan harmonization technique to detect Emphysema and Small Airway Diseases -- Transfer Learning for Segmentation of Injured Lungs using Coarse-to-Fine Convolutional Neural Networks -- High throughput lung and lobar segmentation by 2D and 3D CNN on chest CT with diffuse lung disease -- Multi-Structure Segmentation from Partially Labeled Datasets. Application to Body Composition Measurements on CT scans -- 3D Pulmonary Artery Segmentation from CTA Scans using Deep Learning with Realistic Data Augmentation -- Automatic Airway Segmentation in chest CT using Convolutional Neural Networks -- Detecting Out-of-phase Ventilation Using 4DCT to Improve Radiation Therapy for Lung Cancer -- XeMRI to CT Lung Image Registration Enhanced with Personalized 4DCT-derived Motion Model -- Rigid Lens – Locally Rigid Approximations of Deformable Registration for Change Assessment in Thorax-Abdomen CT Follow-Up Scan -- Diffeomorphic Lung Registration using Deep CNNs and Reinforced Learning -- Transfer learning approach to predict biopsy-confirmed malignancy of lung nodules from imaging data: a pilot study -- Convolutional Neural Network Based COPD and Emphysema Classifications Are Predictive of Lung Cancer Diagnosis -- Towards an automatic lung cancer screening system in low dose computed tomography -- Automatic classification of centrilobular emphysema on CT using deep learning: comparison with visual scoring -- On the Relevance of the Loss Function in the Agatston Score Regression from non-ECG Gated CT Scans -- Accurate Measurement of Airway Morphology on Chest CT images.
Record Nr. UNINA-9910349407203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis [[electronic resource] ] : 7th Joint International Workshop, CVII-STENT 2018 and Third International Workshop, LABELS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Simone Balocco, Raphael Sznitman, Anne Martel, Lena Maier-Hein, Luc Duong, Guillaume Zahnd, Stefanie Demirci, Shadi Albarqouni, Su-Lin Lee, Stefano Moriconi, Veronika Cheplygina, Diana Mateus, Emanuele Trucco, Eric Granger, Pierre Jannin
Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis [[electronic resource] ] : 7th Joint International Workshop, CVII-STENT 2018 and Third International Workshop, LABELS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Simone Balocco, Raphael Sznitman, Anne Martel, Lena Maier-Hein, Luc Duong, Guillaume Zahnd, Stefanie Demirci, Shadi Albarqouni, Su-Lin Lee, Stefano Moriconi, Veronika Cheplygina, Diana Mateus, Emanuele Trucco, Eric Granger, Pierre Jannin
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (xvii, 202 pages) : color illustrations
Disciplina 651.504261
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Health informatics
Artificial intelligence
Computer organization
Image Processing and Computer Vision
Health Informatics
Artificial Intelligence
Computer Systems Organization and Communication Networks
ISBN 3-030-01364-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Blood-flow estimation in the hepatic arteries based on 3D/2D angiography registration -- Automated quantification of blood flow velocity from time-resolved CT angiography -- Multiple device segmentation for fluoroscopic imaging using multi-task learning -- Segmentation of the Aorta Using Active Contours with Histogram-Based Descriptors -- Layer Separation in X-ray Angiograms for Vessel Enhancement with Fully Convolutional Network -- Generation of a HER2 breast cancer gold-standard using supervised learning from multiple experts -- Deep Learning-based Detection and Segmentation for BVS Struts in IVOCT Images -- Towards Automatic Measurement of Type B Aortic Dissection Parameters -- Prediction of FFR from IVUS Images using Machine Learning -- Deep Learning Retinal Vessel Segmentation From a Single Annotated Example: An Application of Cyclic Generative Adversarial Neural Networks -- An Efficient and Comprehensive Labeling Tool for Large-scale Annotation of Fundus Images -- Crowd disagreement about medical images is informative -- Imperfect Segmentation Labels: How Much Do They Matter? -- Crowdsourcing annotation of surgical instruments in videos of cataract surgery -- Four-dimensional ASL MR angiography phantoms with noise learned by neural styling -- Feature learning based on visual similarity triplets in medical image analysis: A case study of emphysema in chest CT scans -- Capsule Networks against Medical Imaging Data Challenges -- Fully Automatic Segmentation of Coronary Arteries based on Deep Neural Network in Intravascular Ultrasound Images -- Weakly-Supervised Learning for Tool Localization in Laparoscopic Videos -- Radiology Objects in COntext (ROCO) -- Improving out-of-sample prediction of quality of MRIQC.
Record Nr. UNISA-996466467603316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis : 7th Joint International Workshop, CVII-STENT 2018 and Third International Workshop, LABELS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Simone Balocco, Raphael Sznitman, Anne Martel, Lena Maier-Hein, Luc Duong, Guillaume Zahnd, Stefanie Demirci, Shadi Albarqouni, Su-Lin Lee, Stefano Moriconi, Veronika Cheplygina, Diana Mateus, Emanuele Trucco, Eric Granger, Pierre Jannin
Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis : 7th Joint International Workshop, CVII-STENT 2018 and Third International Workshop, LABELS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Simone Balocco, Raphael Sznitman, Anne Martel, Lena Maier-Hein, Luc Duong, Guillaume Zahnd, Stefanie Demirci, Shadi Albarqouni, Su-Lin Lee, Stefano Moriconi, Veronika Cheplygina, Diana Mateus, Emanuele Trucco, Eric Granger, Pierre Jannin
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (xvii, 202 pages) : color illustrations
Disciplina 651.504261
610.285
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Health informatics
Artificial intelligence
Computer organization
Image Processing and Computer Vision
Health Informatics
Artificial Intelligence
Computer Systems Organization and Communication Networks
ISBN 3-030-01364-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Blood-flow estimation in the hepatic arteries based on 3D/2D angiography registration -- Automated quantification of blood flow velocity from time-resolved CT angiography -- Multiple device segmentation for fluoroscopic imaging using multi-task learning -- Segmentation of the Aorta Using Active Contours with Histogram-Based Descriptors -- Layer Separation in X-ray Angiograms for Vessel Enhancement with Fully Convolutional Network -- Generation of a HER2 breast cancer gold-standard using supervised learning from multiple experts -- Deep Learning-based Detection and Segmentation for BVS Struts in IVOCT Images -- Towards Automatic Measurement of Type B Aortic Dissection Parameters -- Prediction of FFR from IVUS Images using Machine Learning -- Deep Learning Retinal Vessel Segmentation From a Single Annotated Example: An Application of Cyclic Generative Adversarial Neural Networks -- An Efficient and Comprehensive Labeling Tool for Large-scale Annotation of Fundus Images -- Crowd disagreement about medical images is informative -- Imperfect Segmentation Labels: How Much Do They Matter? -- Crowdsourcing annotation of surgical instruments in videos of cataract surgery -- Four-dimensional ASL MR angiography phantoms with noise learned by neural styling -- Feature learning based on visual similarity triplets in medical image analysis: A case study of emphysema in chest CT scans -- Capsule Networks against Medical Imaging Data Challenges -- Fully Automatic Segmentation of Coronary Arteries based on Deep Neural Network in Intravascular Ultrasound Images -- Weakly-Supervised Learning for Tool Localization in Laparoscopic Videos -- Radiology Objects in COntext (ROCO) -- Improving out-of-sample prediction of quality of MRIQC.
Record Nr. UNINA-9910349396903321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui