top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Bias and Fairness in Information Retrieval [[electronic resource] ] : 4th International Workshop, BIAS 2023, Dublin, Ireland, April 2, 2023, Revised Selected Papers / / edited by Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo
Advances in Bias and Fairness in Information Retrieval [[electronic resource] ] : 4th International Workshop, BIAS 2023, Dublin, Ireland, April 2, 2023, Revised Selected Papers / / edited by Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo
Autore Boratto Ludovico
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (187 pages)
Disciplina 025.524
Altri autori (Persone) FaralliStefano
MarrasMirko
StiloGiovanni
Collana Communications in Computer and Information Science
Soggetto topico Computer engineering
Computer networks
Artificial intelligence
Electronic commerce
Computer Engineering and Networks
Artificial Intelligence
e-Commerce and e-Business
ISBN 3-031-37249-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto A Study on Accuracy, Miscalibration, and Popularity Bias in Recommendations -- Measuring Bias in Multimodal Models: Multimodal Composite Association Score -- Evaluating Fairness Metrics -- Utilizing Implicit Feedback for User Mainstreaminess Evaluation and Bias Detection in Recommender Systems -- Preserving Utility in Fair Top-k Ranking with Intersectional Bias -- Mitigating Position Bias in Hotels Recommender Systems -- Improving Recommender System Diversity with Variational Autoencoders -- Addressing Biases in the Texts using an End-to-End Pipeline Approach -- Bootless Application of Greedy Re-ranking Algorithms in Fair Neural Team Formation -- How do you feel? Information Retrieval in Psychotherapy and Fair Ranking Assessment -- Understanding Search Behavior Bias in Wikipedia -- Do you MIND? Reflections on the MIND dataset for research on diversity in news recommendations -- Detecting and Measuring Social Bias of Arabic Generative Models in the Context of Search and Recommendation -- What are we missing in algorithmic fairness? Discussing open challenges for fairness analysis in user profiling with Graph Neural Networks.
Record Nr. UNISA-996546825403316
Boratto Ludovico  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in Bias and Fairness in Information Retrieval : 4th International Workshop, BIAS 2023, Dublin, Ireland, April 2, 2023, Revised Selected Papers / / edited by Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo
Advances in Bias and Fairness in Information Retrieval : 4th International Workshop, BIAS 2023, Dublin, Ireland, April 2, 2023, Revised Selected Papers / / edited by Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo
Autore Boratto Ludovico
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (187 pages)
Disciplina 025.524
Altri autori (Persone) FaralliStefano
MarrasMirko
StiloGiovanni
Collana Communications in Computer and Information Science
Soggetto topico Computer engineering
Computer networks
Artificial intelligence
Electronic commerce
Computer Engineering and Networks
Artificial Intelligence
e-Commerce and e-Business
ISBN 3-031-37249-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto A Study on Accuracy, Miscalibration, and Popularity Bias in Recommendations -- Measuring Bias in Multimodal Models: Multimodal Composite Association Score -- Evaluating Fairness Metrics -- Utilizing Implicit Feedback for User Mainstreaminess Evaluation and Bias Detection in Recommender Systems -- Preserving Utility in Fair Top-k Ranking with Intersectional Bias -- Mitigating Position Bias in Hotels Recommender Systems -- Improving Recommender System Diversity with Variational Autoencoders -- Addressing Biases in the Texts using an End-to-End Pipeline Approach -- Bootless Application of Greedy Re-ranking Algorithms in Fair Neural Team Formation -- How do you feel? Information Retrieval in Psychotherapy and Fair Ranking Assessment -- Understanding Search Behavior Bias in Wikipedia -- Do you MIND? Reflections on the MIND dataset for research on diversity in news recommendations -- Detecting and Measuring Social Bias of Arabic Generative Models in the Context of Search and Recommendation -- What are we missing in algorithmic fairness? Discussing open challenges for fairness analysis in user profiling with Graph Neural Networks.
Record Nr. UNINA-9910734876903321
Boratto Ludovico  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bias and social aspects in search and recommendation : first International Workshop, BIAS 2020, Lisbon, Portugal, April 14, Proceedings / / Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo (eds.)
Bias and social aspects in search and recommendation : first International Workshop, BIAS 2020, Lisbon, Portugal, April 14, Proceedings / / Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo (eds.)
Pubbl/distr/stampa Cham : , : Springer, , [2020]
Descrizione fisica 1 online resource : illustrations (chiefly color)
Disciplina 005.56
Collana Communications in Computer and Information Science
Soggetto topico Recommender systems (Information filtering)
Information retrieval
Discrimination
ISBN 3-030-52485-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Facets of Fairness in Search and Recommendation -- Mitigating Gender Bias in Machine Learning Data Sets -- Why Do We Need To Be Bots? What Prevents Society From Detecting Biases in Recommendation Systems -- Effect of Debiasing on Information Retrieval -- Matchmaking Under Fairness Constraints: a Speed Dating Case Study -- Recommendation Filtering à la Carte for Intelligent Tutoring Systems -- Bias Goggles - Exploring the bias of Web Domains through the Eyes of the Users -- Data Pipelines for Personalized Exploration of Rated Datasets -- Beyond Accuracy in Link Prediction -- A Novel Similarity Measure for Group Recommender Systems with Optimal Time Complexity -- What Kind of Content are you Prone to Tweet? Multi-topic Preference Model for Tweeters -- Venue Suggestion Using Social-Centric Scores -- The Impact of Foursquare Checkins on Users’ Emotions on Twitter -- Improving News Personalization through Search Logs -- Analyzing the Interaction of Users with News Articles to Create Personalization Services -- Using String-Comparison measures to Improve and Evaluate Collaborative Filtering Recommender Systems -- Enriching Product Catalogs with User Opinions.
Record Nr. UNISA-996465363503316
Cham : , : Springer, , [2020]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Bias and Social Aspects in Search and Recommendation : First International Workshop, BIAS 2020, Lisbon, Portugal, April 14, Proceedings / / edited by Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo
Bias and Social Aspects in Search and Recommendation : First International Workshop, BIAS 2020, Lisbon, Portugal, April 14, Proceedings / / edited by Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource : illustrations (chiefly color)
Disciplina 005.56
Collana Communications in Computer and Information Science
Soggetto topico Database management
Artificial intelligence
Computer engineering
Computer networks
Social sciences - Data processing
Electronic commerce
Database Management System
Artificial Intelligence
Computer Engineering and Networks
Computer Application in Social and Behavioral Sciences
e-Commerce and e-Business
ISBN 3-030-52485-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Facets of Fairness in Search and Recommendation -- Mitigating Gender Bias in Machine Learning Data Sets -- Why Do We Need To Be Bots? What Prevents Society From Detecting Biases in Recommendation Systems -- Effect of Debiasing on Information Retrieval -- Matchmaking Under Fairness Constraints: a Speed Dating Case Study -- Recommendation Filtering à la Carte for Intelligent Tutoring Systems -- Bias Goggles - Exploring the bias of Web Domains through the Eyes of the Users -- Data Pipelines for Personalized Exploration of Rated Datasets -- Beyond Accuracy in Link Prediction -- A Novel Similarity Measure for Group Recommender Systems with Optimal Time Complexity -- What Kind of Content are you Prone to Tweet? Multi-topic Preference Model for Tweeters -- Venue Suggestion Using Social-Centric Scores -- The Impact of Foursquare Checkins on Users’ Emotions on Twitter -- Improving News Personalization through Search Logs -- Analyzing the Interaction of Users with News Articles to Create Personalization Services -- Using String-Comparison measures to Improve and Evaluate Collaborative Filtering Recommender Systems -- Enriching Product Catalogs with User Opinions.
Record Nr. UNINA-9910413447003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui