Advanced Topics in Shannon Sampling and Interpolation Theory [[electronic resource] /] / edited by Robert J.II Marks |
Edizione | [1st ed. 1993.] |
Pubbl/distr/stampa | New York, NY : , : Springer New York : , : Imprint : Springer, , 1993 |
Descrizione fisica | 1 online resource (XIII, 360 p.) |
Disciplina | 621.3 |
Collana | Springer Texts in Electrical Engineering |
Soggetto topico |
Electrical engineering
Computers Chemometrics Computational intelligence Electrical Engineering Models and Principles Math. Applications in Chemistry Computational Intelligence |
ISBN | 1-4613-9757-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Gabor’s Signal Expansion and Its Relation to Sampling of the Sliding-Window Spectrum -- 1.1 Introduction -- 1.2 Sliding-Window Spectrum -- 1.3 Sampling Theorem for the Sliding-Window Spectrum -- 1.4 Examples of Window Functions -- 1.5 Gabor’s Signal Expansion -- 1.6 Examples of Elementary Signals -- 1.7 Degrees of Freedom of a Signal -- 1.8 Optical Generation of Gabor’s Expansion Coefficients for Rastered Signals -- 1.9 Conclusion -- 2 Sampling in Optics -- 2.1 Introduction -- 2.2 Historical Background -- 2.3 The von Laue Analysis -- 2.4 Degrees of Freedom of an Image -- 2.5 Superresolving Pupils -- 2.6 Fresnel SampHng -- 2.7 Exponential SampHng -- 2.8 Partially Coherent Fields -- 2.9 Optical Processing -- 2.10 Conclusion -- 3 A Multidimensional Extension of Papoulis’ Generalized Sampling Expansion with the Application in Minimum Density Sampling -- I: A Multidimensional Extension of Papoulis’ Generalized Sampling Expansion -- 3.1 Introduction -- 3.2 GSE Formulation -- 3.3 M-D Extension -- 3.4 Extension Generalization -- 3.5 Conclusion -- II: Sampling Multidimensional Band-Limited Functions At Minimum Densities -- 3.6 Sample Interdependency -- 3.7 Sampling Density Reduction Using M-D GSE -- 3.8 Computational Complexity of the Two Formulations -- 3.9 Sampling at the Minimum Density -- 3.10 Discussion -- 3.11 Conclusion -- 4 Nonuniform Sampling -- 4.1 Preliminary Discussions -- 4.2 General Nonuniform Sampling Theorems -- 4.3 Spectral Analysis of Nonuniform Samples and Signal Recovery -- 4.4 Discussion on Reconstruction Methods -- 5 Linear Prediction by Samples from the Past -- 5.1 Preliminaries -- 5.2 Prediction of Deterministic Signals -- 5.3 Prediction of Random Signals -- 6 Polar, Spiral, and Generalized Sampling and Interpolation -- 6.1 Introduction -- 6.2 Sampling in Polar Coordinates -- 6.3 Spiral Sampling -- 6.4 Reconstruction from Non-Uniform Samples by Convex Projections -- 6.5 Experimental Results -- 6.6 Conclusions -- Appendix A -- Appendix B -- 7 Error Analysis in Application of Generalizations of the Sampling Theorem -- Foreword: Welcomed General Sources for the Sampling Theorems -- 7.1 Introduction — Sampling Theorems -- 7.2 Error Bounds of the Present Extension of the Sampling Theorem -- 7.3 Applications -- Appendix A -- A.1 Analysis of Gibbs’ Phenomena. |
Record Nr. | UNINA-9910478906503321 |
New York, NY : , : Springer New York : , : Imprint : Springer, , 1993 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Topics in Shannon Sampling and Interpolation Theory [[electronic resource] /] / edited by Robert J.II Marks |
Edizione | [1st ed. 1993.] |
Pubbl/distr/stampa | New York, NY : , : Springer New York : , : Imprint : Springer, , 1993 |
Descrizione fisica | 1 online resource (XIII, 360 p.) |
Disciplina | 621.3 |
Collana | Springer Texts in Electrical Engineering |
Soggetto topico |
Electrical engineering
Computers Chemometrics Computational intelligence Electrical Engineering Models and Principles Math. Applications in Chemistry Computational Intelligence |
ISBN | 1-4613-9757-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Gabor’s Signal Expansion and Its Relation to Sampling of the Sliding-Window Spectrum -- 1.1 Introduction -- 1.2 Sliding-Window Spectrum -- 1.3 Sampling Theorem for the Sliding-Window Spectrum -- 1.4 Examples of Window Functions -- 1.5 Gabor’s Signal Expansion -- 1.6 Examples of Elementary Signals -- 1.7 Degrees of Freedom of a Signal -- 1.8 Optical Generation of Gabor’s Expansion Coefficients for Rastered Signals -- 1.9 Conclusion -- 2 Sampling in Optics -- 2.1 Introduction -- 2.2 Historical Background -- 2.3 The von Laue Analysis -- 2.4 Degrees of Freedom of an Image -- 2.5 Superresolving Pupils -- 2.6 Fresnel SampHng -- 2.7 Exponential SampHng -- 2.8 Partially Coherent Fields -- 2.9 Optical Processing -- 2.10 Conclusion -- 3 A Multidimensional Extension of Papoulis’ Generalized Sampling Expansion with the Application in Minimum Density Sampling -- I: A Multidimensional Extension of Papoulis’ Generalized Sampling Expansion -- 3.1 Introduction -- 3.2 GSE Formulation -- 3.3 M-D Extension -- 3.4 Extension Generalization -- 3.5 Conclusion -- II: Sampling Multidimensional Band-Limited Functions At Minimum Densities -- 3.6 Sample Interdependency -- 3.7 Sampling Density Reduction Using M-D GSE -- 3.8 Computational Complexity of the Two Formulations -- 3.9 Sampling at the Minimum Density -- 3.10 Discussion -- 3.11 Conclusion -- 4 Nonuniform Sampling -- 4.1 Preliminary Discussions -- 4.2 General Nonuniform Sampling Theorems -- 4.3 Spectral Analysis of Nonuniform Samples and Signal Recovery -- 4.4 Discussion on Reconstruction Methods -- 5 Linear Prediction by Samples from the Past -- 5.1 Preliminaries -- 5.2 Prediction of Deterministic Signals -- 5.3 Prediction of Random Signals -- 6 Polar, Spiral, and Generalized Sampling and Interpolation -- 6.1 Introduction -- 6.2 Sampling in Polar Coordinates -- 6.3 Spiral Sampling -- 6.4 Reconstruction from Non-Uniform Samples by Convex Projections -- 6.5 Experimental Results -- 6.6 Conclusions -- Appendix A -- Appendix B -- 7 Error Analysis in Application of Generalizations of the Sampling Theorem -- Foreword: Welcomed General Sources for the Sampling Theorems -- 7.1 Introduction — Sampling Theorems -- 7.2 Error Bounds of the Present Extension of the Sampling Theorem -- 7.3 Applications -- Appendix A -- A.1 Analysis of Gibbs’ Phenomena. |
Record Nr. | UNINA-9910789217903321 |
New York, NY : , : Springer New York : , : Imprint : Springer, , 1993 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Topics in Shannon Sampling and Interpolation Theory / / edited by Robert J.II Marks |
Edizione | [1st ed. 1993.] |
Pubbl/distr/stampa | New York, NY : , : Springer New York : , : Imprint : Springer, , 1993 |
Descrizione fisica | 1 online resource (XIII, 360 p.) |
Disciplina | 621.3 |
Collana | Springer Texts in Electrical Engineering |
Soggetto topico |
Electrical engineering
Computers Chemometrics Computational intelligence Electrical Engineering Models and Principles Math. Applications in Chemistry Computational Intelligence |
ISBN | 1-4613-9757-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Gabor’s Signal Expansion and Its Relation to Sampling of the Sliding-Window Spectrum -- 1.1 Introduction -- 1.2 Sliding-Window Spectrum -- 1.3 Sampling Theorem for the Sliding-Window Spectrum -- 1.4 Examples of Window Functions -- 1.5 Gabor’s Signal Expansion -- 1.6 Examples of Elementary Signals -- 1.7 Degrees of Freedom of a Signal -- 1.8 Optical Generation of Gabor’s Expansion Coefficients for Rastered Signals -- 1.9 Conclusion -- 2 Sampling in Optics -- 2.1 Introduction -- 2.2 Historical Background -- 2.3 The von Laue Analysis -- 2.4 Degrees of Freedom of an Image -- 2.5 Superresolving Pupils -- 2.6 Fresnel SampHng -- 2.7 Exponential SampHng -- 2.8 Partially Coherent Fields -- 2.9 Optical Processing -- 2.10 Conclusion -- 3 A Multidimensional Extension of Papoulis’ Generalized Sampling Expansion with the Application in Minimum Density Sampling -- I: A Multidimensional Extension of Papoulis’ Generalized Sampling Expansion -- 3.1 Introduction -- 3.2 GSE Formulation -- 3.3 M-D Extension -- 3.4 Extension Generalization -- 3.5 Conclusion -- II: Sampling Multidimensional Band-Limited Functions At Minimum Densities -- 3.6 Sample Interdependency -- 3.7 Sampling Density Reduction Using M-D GSE -- 3.8 Computational Complexity of the Two Formulations -- 3.9 Sampling at the Minimum Density -- 3.10 Discussion -- 3.11 Conclusion -- 4 Nonuniform Sampling -- 4.1 Preliminary Discussions -- 4.2 General Nonuniform Sampling Theorems -- 4.3 Spectral Analysis of Nonuniform Samples and Signal Recovery -- 4.4 Discussion on Reconstruction Methods -- 5 Linear Prediction by Samples from the Past -- 5.1 Preliminaries -- 5.2 Prediction of Deterministic Signals -- 5.3 Prediction of Random Signals -- 6 Polar, Spiral, and Generalized Sampling and Interpolation -- 6.1 Introduction -- 6.2 Sampling in Polar Coordinates -- 6.3 Spiral Sampling -- 6.4 Reconstruction from Non-Uniform Samples by Convex Projections -- 6.5 Experimental Results -- 6.6 Conclusions -- Appendix A -- Appendix B -- 7 Error Analysis in Application of Generalizations of the Sampling Theorem -- Foreword: Welcomed General Sources for the Sampling Theorems -- 7.1 Introduction — Sampling Theorems -- 7.2 Error Bounds of the Present Extension of the Sampling Theorem -- 7.3 Applications -- Appendix A -- A.1 Analysis of Gibbs’ Phenomena. |
Record Nr. | UNINA-9910818048003321 |
New York, NY : , : Springer New York : , : Imprint : Springer, , 1993 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|