Multiple-point geostatistics : stochastic modeling with training images / / Gregoire Mariethoz and Jef Caers
| Multiple-point geostatistics : stochastic modeling with training images / / Gregoire Mariethoz and Jef Caers |
| Autore | Mariethoz Gregoire |
| Pubbl/distr/stampa | Chichester, England ; ; Oxford, England ; ; Hoboken, New Jersey : , : Wiley Blackwell, , 2015 |
| Descrizione fisica | 1 online resource (379 p.) |
| Disciplina | 551.01/5195 |
| Soggetto topico |
Geology - Statistical methods
Geological modeling |
| ISBN |
1-118-66293-8
1-118-66295-4 1-118-66294-6 |
| Classificazione | SCI031000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Multiple-point geostatistics; Contents; Preface; Acknowledgments; Part I Concepts; 1 Hiking in the Sierra Nevada; 1.1 An imaginary outdoor adventure company: Buena Sierra; 1.2 What lies ahead; 2 Spatial estimation based on random function theory; 2.1 Assumptions of stationarity; 2.2 Assumption of stationarity in spatial problems; 2.3 The kriging solution; 2.3.1 Unbiasedness condition; 2.3.2 Minimizing squared loss; 2.4 Estimating covariances; 2.5 Semivariogram modeling; 2.6 Using a limited neighborhood; 2.7 Universal kriging; 2.8 Semivariogram modeling for universal kriging
2.9 Simple trend example case2.10 Nonstationary covariances; 2.11 Assessment; References; 3 Universal kriging with training images; 3.1 Choosing for random function theory or not?; 3.2 Formulation of universal kriging with training images; 3.2.1 Zero error-sum condition; 3.2.2 Minimum sum of square error condition; 3.3 Positive definiteness of the sop matrix; 3.4 Simple kriging with training images; 3.5 Creating a map of estimates; 3.6 Effect of the size of the training image; 3.7 Effect of the nature of the training image; 3.8 Training images for nonstationary modeling 3.9 Spatial estimation with nonstationary training images3.10 Summary of methodological differences; References; 4 Stochastic simulations based on random function theory; 4.1 The goal of stochastic simulations; 4.2 Stochastic simulation: Gaussian theory; 4.3 The sequential Gaussian simulation algorithm; 4.4 Properties of multi-Gaussian realizations; 4.5 Beyond Gaussian or beyond covariance?; References; 5 Stochastic simulation without random function theory; 5.1 Direct sampling; 5.1.1 Relying on information theory; 5.1.2 Application of direct sampling to Walker Lake 5.2 The extended normal equation5.2.1 Formulation; 5.2.2 The RAM solution; 5.2.3 Single normal equations simulation for Walker Lake; 5.2.4 The problem of conditioning; 5.3 Simulation by texture synthesis; 5.3.1 Computer graphics; 5.3.2 Image quilting; References; 6 Returning to the Sierra Nevada; Reference; Part II Methods; 1 Introduction; 2 The algorithmic building blocks; 2.1 Grid and pointset representations; 2.2 Multivariate grids; 2.3 Neighborhoods; 2.4 Storage and restitution of data events; 2.4.1 Raw storage of training image; 2.4.2 Cross-correlation based convolution 2.4.3 Partial convolution2.4.4 Tree storage; 2.4.5 List storage; 2.4.6 Clustering of patterns; 2.4.7 Parametric representation of patterns; 2.5 Computing distances; 2.5.1 Norms; 2.5.2 Hausdorff distance; 2.5.3 Invariant distances; 2.5.4 Change of variable; 2.5.5 Distances between distributions; 2.6 Sequential simulation; 2.6.1 Random path; 2.6.2 Unilateral path; 2.6.3 Patch-based methods; 2.6.4 Patch carving; 2.7 Multiple grids; 2.8 Conditioning; 2.8.1 The different types of data; 2.8.2 Different types of data: an example; 2.8.3 Steering proportions; References 3 Multiple-point geostatistics algorithms |
| Record Nr. | UNINA-9910140497903321 |
Mariethoz Gregoire
|
||
| Chichester, England ; ; Oxford, England ; ; Hoboken, New Jersey : , : Wiley Blackwell, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Multiple-point geostatistics : stochastic modeling with training images / / Gregoire Mariethoz and Jef Caers
| Multiple-point geostatistics : stochastic modeling with training images / / Gregoire Mariethoz and Jef Caers |
| Autore | Mariethoz Gregoire |
| Pubbl/distr/stampa | Chichester, England ; ; Oxford, England ; ; Hoboken, New Jersey : , : Wiley Blackwell, , 2015 |
| Descrizione fisica | 1 online resource (379 p.) |
| Disciplina | 551.01/5195 |
| Soggetto topico |
Geology - Statistical methods
Geological modeling |
| ISBN |
1-118-66293-8
1-118-66295-4 1-118-66294-6 |
| Classificazione | SCI031000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Multiple-point geostatistics; Contents; Preface; Acknowledgments; Part I Concepts; 1 Hiking in the Sierra Nevada; 1.1 An imaginary outdoor adventure company: Buena Sierra; 1.2 What lies ahead; 2 Spatial estimation based on random function theory; 2.1 Assumptions of stationarity; 2.2 Assumption of stationarity in spatial problems; 2.3 The kriging solution; 2.3.1 Unbiasedness condition; 2.3.2 Minimizing squared loss; 2.4 Estimating covariances; 2.5 Semivariogram modeling; 2.6 Using a limited neighborhood; 2.7 Universal kriging; 2.8 Semivariogram modeling for universal kriging
2.9 Simple trend example case2.10 Nonstationary covariances; 2.11 Assessment; References; 3 Universal kriging with training images; 3.1 Choosing for random function theory or not?; 3.2 Formulation of universal kriging with training images; 3.2.1 Zero error-sum condition; 3.2.2 Minimum sum of square error condition; 3.3 Positive definiteness of the sop matrix; 3.4 Simple kriging with training images; 3.5 Creating a map of estimates; 3.6 Effect of the size of the training image; 3.7 Effect of the nature of the training image; 3.8 Training images for nonstationary modeling 3.9 Spatial estimation with nonstationary training images3.10 Summary of methodological differences; References; 4 Stochastic simulations based on random function theory; 4.1 The goal of stochastic simulations; 4.2 Stochastic simulation: Gaussian theory; 4.3 The sequential Gaussian simulation algorithm; 4.4 Properties of multi-Gaussian realizations; 4.5 Beyond Gaussian or beyond covariance?; References; 5 Stochastic simulation without random function theory; 5.1 Direct sampling; 5.1.1 Relying on information theory; 5.1.2 Application of direct sampling to Walker Lake 5.2 The extended normal equation5.2.1 Formulation; 5.2.2 The RAM solution; 5.2.3 Single normal equations simulation for Walker Lake; 5.2.4 The problem of conditioning; 5.3 Simulation by texture synthesis; 5.3.1 Computer graphics; 5.3.2 Image quilting; References; 6 Returning to the Sierra Nevada; Reference; Part II Methods; 1 Introduction; 2 The algorithmic building blocks; 2.1 Grid and pointset representations; 2.2 Multivariate grids; 2.3 Neighborhoods; 2.4 Storage and restitution of data events; 2.4.1 Raw storage of training image; 2.4.2 Cross-correlation based convolution 2.4.3 Partial convolution2.4.4 Tree storage; 2.4.5 List storage; 2.4.6 Clustering of patterns; 2.4.7 Parametric representation of patterns; 2.5 Computing distances; 2.5.1 Norms; 2.5.2 Hausdorff distance; 2.5.3 Invariant distances; 2.5.4 Change of variable; 2.5.5 Distances between distributions; 2.6 Sequential simulation; 2.6.1 Random path; 2.6.2 Unilateral path; 2.6.3 Patch-based methods; 2.6.4 Patch carving; 2.7 Multiple grids; 2.8 Conditioning; 2.8.1 The different types of data; 2.8.2 Different types of data: an example; 2.8.3 Steering proportions; References 3 Multiple-point geostatistics algorithms |
| Record Nr. | UNINA-9910812133303321 |
Mariethoz Gregoire
|
||
| Chichester, England ; ; Oxford, England ; ; Hoboken, New Jersey : , : Wiley Blackwell, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||