Aerogels for Energy Saving and Storage
| Aerogels for Energy Saving and Storage |
| Autore | Mathew Meldin |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (545 pages) |
| Disciplina | 621.4024 |
| Altri autori (Persone) |
MariaHanna J
NzihouAnge ThomasSabu |
| Soggetto topico |
Aerogels
Energy storage |
| ISBN |
9781119717621
9781119717645 9781119717638 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 The History, Physical Properties, and Energy-Related Applications of Aerogels -- 1.1 Definition and History of the Aerogels -- 1.1.1 Basic Characteristics and Definition of Aerogels -- 1.1.2 Brief History and Evolution of the Aerogel Science -- 1.2 The Physics Properties of the Aerogels -- 1.2.1 Mechanical Properties -- 1.2.2 Thermal Properties -- 1.2.2.1 Solid Conductivity -- 1.2.2.2 Gaseous Conductivity -- 1.2.2.3 Radiative Heat Transfer -- 1.2.3 Optical Properties -- 1.2.4 Electrical Properties -- 1.2.4.1 Dielectric Properties -- 1.2.4.2 Electrical Conductivity -- 1.2.4.3 Negative Permittivity and Negative Permeability -- 1.2.5 Acoustic Properties -- 1.3 Energy-Related Aerogel Applications -- 1.3.1 Applications in Energy Saving -- 1.3.2 Applications in Energy Conversion -- 1.3.3 Applications in Energy Storage -- 1.4 Prospects -- 1.4.1 Fundamental Science of the Aerogels -- 1.4.2 Novel Aerogels -- 1.4.3 Novel Application and Industrialization Technology of the Aerogels -- References -- Chapter 2 Aerogels and Their Composites in Energy Generation and Conversion Devices -- 2.1 Introduction to Aerogels -- 2.2 Strategies for Development of Aerogel Materials -- 2.2.1 Oxide-based Aerogel -- 2.2.2 Organic Aerogel -- 2.2.3 Carbon-based Aerogel -- 2.2.4 Chalcogenide Aerogel -- 2.2.5 Inorganic Gels -- 2.3 Chemistry and Mechanisms of Aerogels Formation -- 2.3.1 Mechanism of Network Formation in Aerogels -- 2.3.1.1 Sol-GelMethod -- 2.3.1.2 Self-AssemblyMethod -- 2.3.1.3 Emulsion Method -- 2.3.1.4 3-DPrinting -- 2.4 Drying Techniques -- 2.4.1 Supercritical Drying -- 2.4.2 Freeze Drying -- 2.4.3 Ambient Pressure Drying -- 2.4.4 Organic Solvent Sublimation Drying -- 2.5 Properties and Characterization -- 2.5.1 Aerogel Characterization.
2.5.2 Optical and IR Properties -- 2.5.3 Thermal Properties -- 2.5.4 Mechanical and Acoustic Properties -- 2.6 Applications of Aerogel in Energy Storage and Energy Saving -- 2.6.1 Batteries -- 2.6.1.1 Li-ion Battery -- 2.6.1.2 Li-SBattery -- 2.6.1.3 Li-airBattery -- 2.6.1.4 Zn-ionBattery -- 2.6.1.5 Zn-airBattery -- 2.6.1.6 Na-ionBattery -- 2.6.2 Supercapacitors -- 2.6.2.1 Electric Double Layer Capacitors -- 2.6.2.2 Pseudo-capacitors -- 2.6.2.3 Hybrid Capacitors -- 2.6.3 Fuel Cells -- 2.6.4 Electrocatalytic Hydrogen Evolution -- 2.6.5 Electrocatalytic Oxygen Reduction -- 2.7 Summary and Future Prospects -- Acknowledgments -- References -- Chapter 3 Metal Aerogels for Energy Storage and Conversion -- 3.1 Introduction of Metal Aerogels -- 3.2 Characterizations -- 3.2.1 Densities and Pore Structures -- 3.2.2 Morphologies -- 3.2.3 Element Distribution -- 3.2.4 Crystalline Structure -- 3.2.5 Mechanical Properties -- 3.2.6 Time-Lapse Techniques -- 3.3 Synthesis Methodologies -- 3.3.1 Mechanistic Insights -- 3.3.2 Two-Step Gelation -- 3.3.2.1 Precursors -- 3.3.2.2 Reductants -- 3.3.2.3 Initiation -- 3.3.3 One-Step Gelation -- 3.3.4 Acceleration -- 3.3.5 Postsynthesis -- 3.3.6 Drying of Wet Gels -- 3.3.7 Freezing-Based Method -- 3.3.7.1 Freeze-Casting -- 3.3.7.2 Freeze-Thawing -- 3.3.7.3 3D Printing -- 3.4 Energy-Related Applications -- 3.4.1 Electrocatalysis in Fuel Cells -- 3.4.1.1 Fuel Oxidation Reactions -- 3.4.1.2 Oxygen Reduction Reactions -- 3.4.2 Electrocatalysis in Water Splitting -- 3.4.2.1 Oxygen Evolution Reactions -- 3.4.2.2 Hydrogen Evolution Reactions -- 3.4.3 Electrocatalytic CO2 Reduction -- 3.4.4 Photoelectrocatalysis for Alcohol Oxidation -- 3.4.4.1 Energy Storage and Conversion -- 3.4.4.2 Electrochemical Energy Storage -- 3.4.4.3 Hydrogen Storage -- 3.4.4.4 Self-PropulsionDevices -- 3.5 Conclusions -- References. Chapter 4 Aerogels Using Polymer Composites -- 4.1 Introduction -- 4.2 Preparation of Polymer-Based Aerogels -- 4.2.1 The Sol-Gel Process -- 4.2.2 Aging -- 4.2.3 Gel-Aerogel Transition (Drying) -- 4.2.3.1 Supercritical Drying -- 4.2.3.2 Ambient Pressure Drying -- 4.2.3.3 Freeze Drying -- 4.2.3.4 Other Drying Methods -- 4.2.4 Combination of a Polymer Aerogel with Another Component -- 4.3 Several Common Polymer Aerogels and Their Composites -- 4.3.1 Polyimide-Based Aerogels -- 4.3.1.1 Polyimide-BasedAerogels Combined with Carbon Materials -- 4.3.1.2 Cellulose/Polyimide Composite Aerogels -- 4.3.1.3 Polyimide-BasedAerogels Combined with Inorganic Materials -- 4.3.2 Poly(Vinyl Alcohol)-Based Aerogels -- 4.3.2.1 PVA-BasedAerogels Combined with Carbon Materials -- 4.3.2.2 Cellulose/PVA Composite Aerogels -- 4.3.2.3 PVA-BasedAerogels Combined with Inorganic Materials -- 4.3.2.4 PVA-BasedAerogels Combined with Hybrid Materials -- 4.3.3 Phenolic Resin-Based Aerogels -- 4.3.3.1 Phenolic Resin-BasedAerogel Composites -- 4.4 Applications of Polymer Aerogel Composites -- 4.4.1 Absorption -- 4.4.2 Thermal Insulation -- 4.4.3 Flame Retardant Materials -- 4.4.4 Sensing -- 4.4.5 Electromagnetic Interference Shielding -- 4.5 Conclusions and Outlook -- References -- Chapter 5 Epoxide Related Aerogels -- Sol-Gel Synthesis, Property Studies and Energy Applications -- 5.1 Overview of Epoxide Aerogels -- 5.1.1 History of Aerogels -- 5.1.2 Advantages of Epoxide-Assisted Approach -- 5.2 Synthesis and Drying Technique -- 5.2.1 Metal Salt Precursors for Aerogels -- 5.2.1.1 Selection of Precursors -- 5.2.1.2 Choice of Solvents -- 5.2.2 Hydrolysis -- 5.2.2.1 Hydrolysis in Aqueous Media: Formation of Hydroxo/Oxo Ligands -- 5.2.2.2 Hydrolysis in Organic Solvents -- 5.2.3 Epoxide-Assisted Gelation and Condensation -- 5.2.3.1 Olation Condensation -- 5.2.3.2 Oxolation Condensation. 5.2.4 Gel Drying -- 5.2.4.1 Supercritical Drying (SCD) -- 5.2.4.2 Freeze Drying -- 5.2.4.3 Ambient Pressure Drying -- 5.3 Epoxide-assisted Aerogels -- 5.3.1 Metal Oxides -- 5.3.1.1 Alumina Aerogels -- 5.3.1.2 Titania Aerogels -- 5.3.1.3 Vanadia Aerogels -- 5.3.1.4 Zirconia Aerogels -- 5.3.1.5 Other Oxide Aerogels -- 5.3.2 Composites Aerogels -- 5.3.2.1 Inorganic-inorganicComposites -- 5.3.2.2 Inorganic-OrganicComposites -- 5.4 Aerogels Properties and Characterization -- 5.4.1 Structural Characterization -- 5.4.1.1 X-rayDiffraction -- 5.4.1.2 Electron Microscopy -- 5.4.1.3 Infrared Spectroscopy -- 5.4.2 Mechanical Characterization -- 5.5 Some Applications and Examples -- 5.5.1 Catalysis -- 5.5.2 Solid Fuel Cell -- 5.5.3 Water Treatment -- 5.5.4 Biodiesel Production -- 5.5.5 Energy Conversion and Storage Applications -- 5.6 Summary -- References -- Chapter 6 CNT-Based Aerogels and Their Applications -- 6.1 Introduction -- 6.2 The Fundamental Principle of Preparing CNT-based Aerogels -- 6.3 Strategies for Preparation of CNT-based Aerogels -- 6.3.1 Preparation of CNT-based Aerogels via CVD -- 6.3.1.1 Isotropic CNT Aerogels -- 6.3.1.2 3D Vertical CNT Arrays -- 6.3.1.3 Template-assistedCNT-basedAerogels -- 6.3.2 Surface-modified CNT-based Aerogels -- 6.3.2.1 Preparation of Aerogels with Noncovalent Modified CNTs -- 6.3.2.2 Preparation of Aerogels with Covalent Modified CNTs -- 6.3.3 CNT Doping in 3D Aerogels -- 6.3.4 CNT/Inorganic Nanocrystal Composite Aerogels -- 6.4 Applications -- 6.4.1 Water Treatment -- 6.4.2 Energy Storage and Conversion -- 6.4.3 Catalysts -- 6.5 Conclusions and Perspectives -- References -- Chapter 7 Silica-Based Aerogels for Building Transparent Components -- 7.1 Introduction -- 7.2 Silica Aerogels Production -- 7.2.1 Preparation Steps -- 7.2.1.1 Precursors -- 7.2.1.2 Gel Preparation -- 7.2.1.3 Aging -- 7.2.1.4 Drying. 7.2.1.1 Precursors -- 7.2.2 Rapid Extraction Methods -- 7.3 Silica Aerogel Properties -- 7.3.1 Mechanical Properties -- 7.3.2 Thermal Properties -- 7.3.3 Optical Properties -- 7.3.4 Acoustic Properties -- 7.4 Energy Performance of Silica Aerogels in Buildings -- 7.4.1 Energy Performance of Monolithic Aerogel Glazing Systems -- 7.4.2 Energy Performance of Granular Aerogel Glazing Systems -- 7.5 Applications -- 7.6 Conclusions -- 7.7 Outlook -- References -- Chapter 8 Inorganic Aerogels and Their Composites for Thermal Insulation in White Goods -- 8.1 Introduction -- 8.1.1 Energy Consumption in White Goods -- 8.1.2 Aerogels -- 8.1.2.1 Synthesis of Aerogels -- 8.1.2.2 Classification of Aerogels -- 8.1.2.3 Forms of Aerogels -- 8.2 Heat Transfer Mechanisms in Aerogels -- 8.2.1 Solid Thermal Conductivity -- 8.2.2 Gaseous Thermal Conductivity -- 8.2.3 Radiative Thermal Conductivity -- 8.2.3.1 Approximations Neglecting Some Physical Process -- 8.2.3.2 Optically Thin Approximation Optically -- 8.2.3.3 Optically Thick Approximation -- 8.2.3.4 Two Flux Method -- 8.2.3.5 Discrete Ordinate Method -- 8.3 Inorganic Aerogels and Their Composites in White Goods -- 8.3.1 Refrigerators -- 8.3.1.1 Thermal Insulation in Refrigerators -- 8.3.1.2 Aerogels for Vacuum Insulation Panels -- 8.3.1.3 Aerogel Blankets for Refrigerators -- 8.3.1.4 Monolithic Aerogels for Refrigerators -- 8.3.1.5 Aerogel Polyurethane Composites -- 8.3.2 Ovens -- 8.3.2.1 Thermal Insulation in Ovens -- 8.3.2.2 Aerogel Blankets for Ovens -- 8.3.2.3 Monolithic Aerogel Panels -- 8.4 Conclusions -- References -- Chapter 9 Natural Polymer-Based Aerogels for Filtration Applications -- 9.1 Introduction -- 9.2 Material Option for the Preparation of Aerogel -- 9.2.1 Synthetic Polymers -- 9.2.2 Biopolymers-Based Aerogels -- 9.3 Application of Aerogels in Water Purification -- 9.3.1 Organic Molecule Separation. 9.3.2 Organic Solvent Separation. |
| Record Nr. | UNINA-9911019488203321 |
Mathew Meldin
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biopolymers for Water Purification
| Biopolymers for Water Purification |
| Autore | Thomas Sabu |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (523 pages) |
| Disciplina | 628.164 |
| Altri autori (Persone) |
VadakkekaraGeorgi J
MariaHanna J |
| ISBN |
9783527835904
3527835903 9783527835881 3527835881 9783527835898 352783589X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9911019332103321 |
Thomas Sabu
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Chemical Physics of Polymer Nanocomposites : Processing, Morphology, Structure, Thermodynamics, Rheology
| Chemical Physics of Polymer Nanocomposites : Processing, Morphology, Structure, Thermodynamics, Rheology |
| Autore | Myasoedova Vera V |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (1062 pages) |
| Altri autori (Persone) |
ThomasSabu
MariaHanna J |
| Soggetto topico |
Polymers
Nanotechnology |
| ISBN |
9783527837021
3527837027 9783527837007 3527837000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Volume I -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Classification of Nanofillers, Nano‐Objects, Nanomaterials, and Polymer Nanocomposites Based on Chemical Nature and Identity -- 1.1 Classification of Nanocomposites -- 1.2 Classification of Nanofillers -- 1.3 Classification of Nano‐Objects and Nanomaterials -- 1.4 Production Method and Existing Form of Nano‐Objects -- 1.5 Classification of Polymer Nanocomposites -- 1.6 Summaries -- References -- Chapter 2 Biological and Chemical Synthesis of Nanoparticles -- 2.1 Introduction -- 2.2 Synthesis Approach of Nanoparticles -- 2.2.1 Bottom‐Up Approach -- 2.2.1.1 Non‐Biological Synthesis of Nanoparticles -- 2.2.2 Top‐Down Approach -- 2.2.2.1 Spinning Methods -- 2.2.2.2 Template Based Synthesis -- 2.2.2.3 Chemical Vapor Deposition -- 2.2.2.4 Laser Pyrolysis Synthesis of Nanoparticles -- 2.2.2.5 Flame Spray Pyrolysis Synthesis of Nanoparticles -- 2.2.2.6 Inert Gas Condensation -- 2.2.2.7 Laser Ablation -- 2.2.2.8 Mechanical Milling -- 2.2.2.9 Chemical Etching -- 2.2.2.10 Electro‐Explosion of Wire -- 2.2.3 Biological Synthesis of Nanoparticles -- 2.2.3.1 Bacteria Mediated Nanoparticles -- 2.2.3.2 Fungi Mediated Nanoparticles -- 2.2.3.3 Yeasts Mediated Nanoparticles -- 2.2.3.4 Algae Mediated Nanoparticles -- 2.2.3.5 Plant‐Mediated Nanoparticles -- 2.3 Conclusion -- References -- Chapter 3 Using In situ Polymerization for Manufacturing of Polymer Nanocellulose -- 3.1 Introduction -- 3.2 In situ Polymerization -- 3.3 Cellulose Nanoparticles -- 3.4 Polymer Nanocellulose -- 3.5 Method of Polymer Nanocomposite Processing -- 3.5.1 Solvent Casting and Evaporation -- 3.5.2 Coating Polymerization Process -- 3.5.3 Melt Processing -- 3.5.4 Radical Polymerization -- 3.5.5 Other Methods -- 3.6 Applications of In situ Polymerization Methods for the Production of Nanocellulose Materials.
3.7 Future of In situ Polymerization Manufacturing Processes -- 3.8 Conclusion -- References -- Chapter 4 Manufacturing of Nanocomposites by Electrospinning -- 4.1 Introduction -- 4.2 Electrospinning Process -- 4.2.1 Principles of the Process -- 4.2.2 Solution Parameters -- 4.2.2.1 Concentration and Viscosity of Solution -- 4.2.2.2 Surface Tension -- 4.2.2.3 Conductivity of Solution -- 4.2.2.4 Polymer Molecular Weight -- 4.2.2.5 Addition of Inorganic Components -- 4.2.2.6 Applied Voltage -- 4.2.2.7 Receiving Distance -- 4.2.2.8 Feed Rate -- 4.2.2.9 Electrospinning Type/Principle/Spinneret -- 4.2.2.10 Receiver Morphology/Specification -- 4.2.3 Environmental Parameters -- 4.2.3.1 Temperature -- 4.2.3.2 Humidity -- 4.3 Fiber Type -- 4.3.1 Organic Polymers (Natural Polymers, Synthetic Polymers) -- 4.3.1.1 Natural Polymers -- 4.3.1.2 Synthetic Polymers -- 4.3.2 Inorganic Materials -- 4.3.2.1 Carbon Nanofibers -- 4.3.2.2 Metal Oxide Nanofibers -- 4.3.2.3 Metal Nanofibers -- 4.4 Electrospinning of Nanocomposite -- 4.4.1 Polymer/Polymer -- 4.4.2 Polymer/Inorganic -- 4.4.3 Inorganic/Inorganic -- 4.5 Application -- 4.5.1 Filtration -- 4.5.2 E‐spun Nanofibers for Hazardous Substances Adsorption -- 4.5.3 E‐spun Nanofibers for Bioengineering Separation -- 4.5.4 E‐spun Nanofibers for Insulation -- 4.5.5 Medical/Biological Applications -- 4.5.6 Catalysis -- 4.5.7 Energy Conversion and Storage -- 4.5.8 Triboelectric Nanogenerator -- 4.6 Summary and Outlook -- References -- Chapter 5 Polymer Nanocomposites Based on Metal Oxide Nanoplatelets -- 5.1 Introduction -- 5.2 Polymers -- 5.2.1 Polymer Structure -- 5.2.2 Design Approaches to Polymers -- 5.2.2.1 Surface‐initiated Atom‐Transfer Radical Polymerization (SI‐ATRP) -- 5.2.2.2 Surface‐initiated Reversible Addition-Fragmentation Chain‐Transfer (SI‐RAFT) Strategy -- 5.3 Properties of Nanoplatelets (NPLs). 5.3.1 Applications of Nanoplatelets -- 5.4 Polymer-Metal Oxide Nanocomposite Materials -- 5.4.1 Properties of Polymer-Metal Oxide Nanocomposites -- 5.4.1.1 Electrical Properties -- 5.4.1.2 Optical Properties -- 5.4.1.3 Thermal Properties -- 5.4.1.4 Mechanical Properties -- 5.4.2 Designs of Polymer-Metal Oxide Composites -- 5.4.3 Synthesis Methods of Polymer-Metal Oxide Composites -- 5.4.3.1 Blending/Mixing -- 5.4.3.2 In situ polymerization -- 5.4.3.3 Sol-Gel Process -- 5.5 General Applications of Polymer-Metal Oxide Composites -- 5.5.1 Applications of Polymer-Metal Oxide Composites in Sensors -- 5.5.2 Applications of Polymer-Metal Oxide Composites in Supercapacitors -- 5.6 Conclusion -- Acknowledgments -- References -- Chapter 6 Polymer Nanocomposites Filled in Carbon Nanotubes: Properties and Applications -- 6.1 Introduction -- 6.1.1 Polymer Nanocomposites -- 6.1.2 Carbon Nanotubes -- 6.1.2.1 Functionalization of CNTs -- 6.1.3 Potential Uses of CNT‐based Polymer Nanocomposites -- 6.1.4 Some Examples of Thermoplastics Used as Nanocomposite Matrix -- 6.1.4.1 Poly (Trimethylene Terephthalate) -- 6.1.4.2 Acrylonitrile Butadiene Styrene -- 6.1.4.3 Polycarbonate -- 6.1.4.4 Poly (Lactic Acid) -- 6.2 Experimental Section: Production of Nanocomposites Filled CNT -- 6.2.1 CNT Functionalization -- 6.2.2 Polyester‐based CNT Nanocomposites: PTT/CNT -- 6.2.3 Blend‐based CNT Nanocomposites: PTT/ABS/CNT -- 6.2.4 Blend‐based CNT Nanocomposites: PC/ABS/CNT -- 6.2.4.1 Injection Molding Process -- 6.2.5 Mechanical, Electrical Characterization and Morphology -- 6.3 Results and Discussion -- 6.3.1 CNT Functionalization -- 6.3.2 Electrical and Mechanical Properties of CNT/Polymer Nanocomposites -- 6.3.3 Electrical and Mechanical Properties of Polymer Blends‐based CNT Nanocomposites -- 6.3.3.1 PTT/ABS/MWCNT Films -- 6.3.3.2 PC/ABS/MWCNT Injection Molded Samples. 6.4 Conclusions -- Acknowledgments -- References -- Chapter 7 Polymer Nanocomposites Filled in Nanocellulose and Cellulose‐whiskers -- 7.1 Introduction -- 7.2 Nanocellulose: Extraction, Types, and Application -- 7.3 Polymers Nanocomposites -- 7.3.1 Thermoplastic -- 7.3.2 Thermosetting -- 7.3.3 Elastomers -- 7.4 Nanocellulose Nanocomposite Applications -- 7.5 Processing: Different Approaches and Dispersion Methods of Nanocellulose -- 7.6 Future Trends and Perspectives -- Acknowledgments -- References -- Chapter 8 Polymer Nanocomposites Based on Nano Chitin -- 8.1 Introduction -- 8.2 Top‐Down Approach for the Preparation of Nanochitins -- 8.3 Top‐Down Approach for the Preparation of Nanochitin/Polymer Composites -- 8.4 Bottom‐Up Approach for the Preparation of Nanochitins -- 8.5 Bottom‐Up Approach for the Preparation of Nanochitin/Polymer Composites -- 8.6 Conclusions -- Acknowledgment -- References -- Chapter 9 Nanostarch‐Filled Polymer Nanocomposites -- 9.1 Introduction -- 9.2 Nanostarch -- 9.2.1 Starch Nanocrystals (SNCs) -- 9.2.2 Amorphous Starch Nanoparticles (SNPs) -- 9.2.3 Nanostarch Functionalization -- 9.3 Nanostarch‐Filled Nanocomposites from Synthetic Polymers -- 9.4 Nanostarch‐Filled Nanocomposites from Natural Polymers -- 9.4.1 Nanostarch‐Filled Starch‐Based Nanocomposites -- 9.4.1.1 Applications of Nanostarch-Starch Nanocomposites in Food Packaging -- 9.5 Regulatory Aspects -- 9.6 Summary and Future Perspectives -- References -- Chapter 10 Polymer Nanocomposites Based on Nanolignin: Preparation, Properties, and Applications -- 10.1 Introduction -- 10.2 Extraction of Lignin -- 10.3 Preparation of Nanolignin and Lignin Nanoparticles -- 10.3.1 Antisolvent Precipitation -- 10.3.1.1 Acid Solution as Antisolvent -- 10.3.1.2 Supercritical CO2 as Antisolvent -- 10.3.2 Physiochemical Preparation of Lignin Nanoparticles -- 10.3.2.1 Homogenization. 10.3.2.2 Ultrasonication -- 10.3.3 Ice Segregation‐induced Self‐assembly -- 10.3.4 Electrospinning of Solutions -- 10.3.5 Aerosol Flow Synthesis -- 10.4 Properties of Nanolignin -- 10.5 Nanolignin Based Nanocomposites -- 10.5.1 Thermoplastic-Lignin Nanocomposites -- 10.5.2 Thermoset-Lignin Nanocomposites -- 10.5.2.1 Formaldehyde‐Based Thermoset-Lignin Nanocomposite -- 10.5.2.2 Epoxy‐Based Thermoset-Lignin Nanocomposite -- 10.5.3 Elastomer- Lignin Nanocomposites -- 10.5.3.1 Natural Rubber‐Based Elastomer-Lignin Nanocomposite -- 10.5.3.2 Synthetic Rubber‐Based Elastomer-Lignin Nanocomposite -- 10.6 Applications of Nanolignin and Lignin Nanocomposites -- 10.6.1 Antibacterial Effect -- 10.6.2 Reinforcing Materials -- 10.6.3 Anti‐ultraviolet Effect -- 10.6.4 Food Packaging Films -- 10.6.5 Green Synthesis of Phenol‐formaldehyde -- 10.6.6 Lignin Composite Foam -- 10.6.7 Future Trends -- 10.7 Conclusions -- References -- Chapter 11 Polymer Nanocomposites Based on Talc -- 11.1 Introduction -- 11.2 Talc -- 11.2.1 General Aspects -- 11.2.2 Geology -- 11.3 Talc/Polymer Nanocomposites Compounding -- 11.4 Influence of Talc Characteristics and Concentration on Polymer Nanocomposites Properties -- 11.4.1 Particle Morphology -- 11.4.2 Particle Size -- 11.4.3 Degree of Purity -- 11.4.4 Nucleating Capability -- 11.4.5 Particle Concentration -- 11.5 Chemical Modifications of Talc -- 11.6 Influence of Talc Surface Treatments on Polymer Nanocomposites Properties -- 11.7 Industrial Applications -- 11.8 Concluding Remarks -- References -- Volume II -- Title Page -- Copyright -- Contents -- Preface -- Chapter 12 Polymer Nanocomposites Based on Graphene and Graphene Oxide -- 12.1 Introduction -- 12.2 Graphene and Oxide Graphene -- 12.3 Polymer Nanocomposites Based on Graphene and Graphene Oxide -- 12.3.1 Obtention of Polymer Nanocomposites Based on Graphene and Graphene Oxide. 12.3.2 Structural Advantages of Graphene‐Polymer Nanocomposites. |
| Record Nr. | UNINA-9911020092403321 |
Myasoedova Vera V
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nanostructured Materials / / by T. Daniel Thangadurai, N. Manjubaashini, Sabu Thomas, Hanna J. Maria
| Nanostructured Materials / / by T. Daniel Thangadurai, N. Manjubaashini, Sabu Thomas, Hanna J. Maria |
| Autore | Thangadurai T. Daniel |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (XI, 210 p. 88 illus., 32 illus. in color.) |
| Disciplina | 620.115 |
| Collana | Engineering Materials |
| Soggetto topico |
Nanotechnology
Nanoscience Nanostructures Nanotechnology and Microengineering Nanoscale Science and Technology |
| ISBN | 3-030-26145-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Nanotechnology and Dimensions -- Nanomaterials, Properties and Applications -- Fundamentals of Nanostructures -- Physics and Chemistry of Nanostructures -- Quantum effects, CNTs, Fullerenes and Dendritic structures -- Semiconductors, Organic and Hybrid Nanostructures -- Properties of Nanostructured Materials -- Synthesis of Nanostructured Materials -- Functionalization of Nanostructures -- Characterization and Technical Analysis of Nanostructured Materials -- (N.A.) -- Nanostructured Materials for Optical and Electronic Applications -- Nanostructured Materials for Bioapplications -- Nanostructured Materials for Photonic Applications -- Nanostructured Materials for Environmental Remediation -- Miscellaneous Applications of Nanostructures -- Nanostructured Materials Life time and Toxicity Analysis -- Nanomaterials Research and Development. |
| Record Nr. | UNINA-9910380724503321 |
Thangadurai T. Daniel
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||