top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Limiting equations for problems involving long range memory / / M. Marcus and Victor Mizel
Limiting equations for problems involving long range memory / / M. Marcus and Victor Mizel
Autore Marcus M (Moshe), <1937->
Pubbl/distr/stampa Providence, R.I., USA : , : American Mathematical Socieity, , [1983]
Descrizione fisica 1 online resource (68 p.)
Disciplina 510 s
514/.322
Collana Memoirs of the American Mathematical Society
Soggetto topico Topological dynamics
Volterra equations
Soggetto genere / forma Electronic books.
ISBN 1-4704-0688-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""IV. Condition for Precompactness in H of Positive Translates of an H-operator""""V. Limiting Equations""; ""5.1 Ω-limiting set of a solution""; ""5.2�5.3 Existence for limiting equations defined on the entire line""; ""5.4�5.5 Limiting set and limiting equation for a family of solutions""; ""VI. Generalization to Non-BV Outputs""; ""6.1�6.2 Weakly H-operators""; ""VII. Applications to Hammerstein Hereditary Operators I""; ""7.1�7.4 Hammerstein hereditary operators""; ""7.5�7.6 Proof that Hammerstein hereditary operators belong to H""
""7.7�7.11 Verification that 'regular' Hammerstein hereditary operators are uniform H-operators and their positive translates are precompact in H""""7.12�7.14 Representation theorem for limiting equations of a regular Hammerstein hereditary equation""; ""VIII. Applications to Functional Differential Equations""; ""8.1 Associating an H-operator to an FDE""; ""8.2�8.3 Quasi-uniform H-operators, the class H[sub(a)]""; ""8.4�8.7 Normalized translates, modified limiting sets of solutions""; ""8.8�8.10 Existence of a limiting equation""
""8.11�8.12 A condition ensuring that limiting equations are also FDE's""""IX. Applications to Hammerstein Hereditary Operators II""; ""9.1�9.2 Hammerstein hereditary operators with nonautonomous kernel""; ""9.3�9.4 Proof that such operators belong to H""; ""9.5�9.6 Conditions for regularity""; ""9.7�9.9 Verification that 'regular' Hammerstein hereditary operators are uniform H-operators and their positive translates are precompact in H""; ""9.10 Representation theorem for limiting equations of a regular Hammerstein hereditary equation""; ""Acknowledgment""; ""Bibliography""
Record Nr. UNINA-9910480466103321
Marcus M (Moshe), <1937->  
Providence, R.I., USA : , : American Mathematical Socieity, , [1983]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Limiting equations for problems involving long range memory / / M. Marcus and Victor Mizel
Limiting equations for problems involving long range memory / / M. Marcus and Victor Mizel
Autore Marcus M (Moshe), <1937->
Pubbl/distr/stampa Providence, R.I., USA : , : American Mathematical Socieity, , [1983]
Descrizione fisica 1 online resource (68 p.)
Disciplina 510 s
514/.322
Collana Memoirs of the American Mathematical Society
Soggetto topico Topological dynamics
Volterra equations
ISBN 1-4704-0688-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""IV. Condition for Precompactness in H of Positive Translates of an H-operator""""V. Limiting Equations""; ""5.1 Ω-limiting set of a solution""; ""5.2�5.3 Existence for limiting equations defined on the entire line""; ""5.4�5.5 Limiting set and limiting equation for a family of solutions""; ""VI. Generalization to Non-BV Outputs""; ""6.1�6.2 Weakly H-operators""; ""VII. Applications to Hammerstein Hereditary Operators I""; ""7.1�7.4 Hammerstein hereditary operators""; ""7.5�7.6 Proof that Hammerstein hereditary operators belong to H""
""7.7�7.11 Verification that 'regular' Hammerstein hereditary operators are uniform H-operators and their positive translates are precompact in H""""7.12�7.14 Representation theorem for limiting equations of a regular Hammerstein hereditary equation""; ""VIII. Applications to Functional Differential Equations""; ""8.1 Associating an H-operator to an FDE""; ""8.2�8.3 Quasi-uniform H-operators, the class H[sub(a)]""; ""8.4�8.7 Normalized translates, modified limiting sets of solutions""; ""8.8�8.10 Existence of a limiting equation""
""8.11�8.12 A condition ensuring that limiting equations are also FDE's""""IX. Applications to Hammerstein Hereditary Operators II""; ""9.1�9.2 Hammerstein hereditary operators with nonautonomous kernel""; ""9.3�9.4 Proof that such operators belong to H""; ""9.5�9.6 Conditions for regularity""; ""9.7�9.9 Verification that 'regular' Hammerstein hereditary operators are uniform H-operators and their positive translates are precompact in H""; ""9.10 Representation theorem for limiting equations of a regular Hammerstein hereditary equation""; ""Acknowledgment""; ""Bibliography""
Record Nr. UNINA-9910788898603321
Marcus M (Moshe), <1937->  
Providence, R.I., USA : , : American Mathematical Socieity, , [1983]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Limiting equations for problems involving long range memory / / M. Marcus and Victor Mizel
Limiting equations for problems involving long range memory / / M. Marcus and Victor Mizel
Autore Marcus M (Moshe), <1937->
Pubbl/distr/stampa Providence, R.I., USA : , : American Mathematical Socieity, , [1983]
Descrizione fisica 1 online resource (68 p.)
Disciplina 510 s
514/.322
Collana Memoirs of the American Mathematical Society
Soggetto topico Topological dynamics
Volterra equations
ISBN 1-4704-0688-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""IV. Condition for Precompactness in H of Positive Translates of an H-operator""""V. Limiting Equations""; ""5.1 Ω-limiting set of a solution""; ""5.2�5.3 Existence for limiting equations defined on the entire line""; ""5.4�5.5 Limiting set and limiting equation for a family of solutions""; ""VI. Generalization to Non-BV Outputs""; ""6.1�6.2 Weakly H-operators""; ""VII. Applications to Hammerstein Hereditary Operators I""; ""7.1�7.4 Hammerstein hereditary operators""; ""7.5�7.6 Proof that Hammerstein hereditary operators belong to H""
""7.7�7.11 Verification that 'regular' Hammerstein hereditary operators are uniform H-operators and their positive translates are precompact in H""""7.12�7.14 Representation theorem for limiting equations of a regular Hammerstein hereditary equation""; ""VIII. Applications to Functional Differential Equations""; ""8.1 Associating an H-operator to an FDE""; ""8.2�8.3 Quasi-uniform H-operators, the class H[sub(a)]""; ""8.4�8.7 Normalized translates, modified limiting sets of solutions""; ""8.8�8.10 Existence of a limiting equation""
""8.11�8.12 A condition ensuring that limiting equations are also FDE's""""IX. Applications to Hammerstein Hereditary Operators II""; ""9.1�9.2 Hammerstein hereditary operators with nonautonomous kernel""; ""9.3�9.4 Proof that such operators belong to H""; ""9.5�9.6 Conditions for regularity""; ""9.7�9.9 Verification that 'regular' Hammerstein hereditary operators are uniform H-operators and their positive translates are precompact in H""; ""9.10 Representation theorem for limiting equations of a regular Hammerstein hereditary equation""; ""Acknowledgment""; ""Bibliography""
Record Nr. UNINA-9910817126503321
Marcus M (Moshe), <1937->  
Providence, R.I., USA : , : American Mathematical Socieity, , [1983]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear second order elliptic equations involving measures / / Moshe Marcus, Laurent Véron
Nonlinear second order elliptic equations involving measures / / Moshe Marcus, Laurent Véron
Autore Marcus M (Moshe), <1937->
Pubbl/distr/stampa Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co. KG, , [2014]
Descrizione fisica 1 online resource (264 p.)
Disciplina 515/.3533
Altri autori (Persone) VéronLaurent
Collana De Gruyter Series in Nonlinear Analysis and Applications
De Gruyter series in nonlinear analysis and applications
Soggetto topico Differential equations, Elliptic
Differential equations, Nonlinear
Soggetto genere / forma Electronic books.
ISBN 3-11-030531-3
Classificazione SK 540
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface -- Contents -- Chapter 1. Linear second order elliptic equations with measure data -- Chapter 2. Nonlinear second order elliptic equations with measure data -- Chapter 3. The boundary trace and associated boundary value problems -- Chapter 4. Isolated singularities -- Chapter 5. Classical theory of maximal and large solutions -- Chapter 6. Further results on singularities and large solutions -- Bibliography -- Index
Record Nr. UNINA-9910453761203321
Marcus M (Moshe), <1937->  
Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co. KG, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear second order elliptic equations involving measures / / Moshe Marcus, Laurent Véron
Nonlinear second order elliptic equations involving measures / / Moshe Marcus, Laurent Véron
Autore Marcus M (Moshe), <1937->
Pubbl/distr/stampa Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co. KG, , [2014]
Descrizione fisica 1 online resource (264 p.)
Disciplina 515/.3533
Altri autori (Persone) VéronLaurent
Collana De Gruyter Series in Nonlinear Analysis and Applications
De Gruyter series in nonlinear analysis and applications
Soggetto topico Differential equations, Elliptic
Differential equations, Nonlinear
Soggetto non controllato Boundary trace
Elliptic equations
Large solutions
Singularities
Subcritical nonlinearity
ISBN 3-11-030531-3
Classificazione SK 540
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface -- Contents -- Chapter 1. Linear second order elliptic equations with measure data -- Chapter 2. Nonlinear second order elliptic equations with measure data -- Chapter 3. The boundary trace and associated boundary value problems -- Chapter 4. Isolated singularities -- Chapter 5. Classical theory of maximal and large solutions -- Chapter 6. Further results on singularities and large solutions -- Bibliography -- Index
Record Nr. UNINA-9910790833303321
Marcus M (Moshe), <1937->  
Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co. KG, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear second order elliptic equations involving measures / / Moshe Marcus, Laurent Véron
Nonlinear second order elliptic equations involving measures / / Moshe Marcus, Laurent Véron
Autore Marcus M (Moshe), <1937->
Pubbl/distr/stampa Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co. KG, , [2014]
Descrizione fisica 1 online resource (264 p.)
Disciplina 515/.3533
Altri autori (Persone) VéronLaurent
Collana De Gruyter Series in Nonlinear Analysis and Applications
De Gruyter series in nonlinear analysis and applications
Soggetto topico Differential equations, Elliptic
Differential equations, Nonlinear
Soggetto non controllato Boundary trace
Elliptic equations
Large solutions
Singularities
Subcritical nonlinearity
ISBN 3-11-030531-3
Classificazione SK 540
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface -- Contents -- Chapter 1. Linear second order elliptic equations with measure data -- Chapter 2. Nonlinear second order elliptic equations with measure data -- Chapter 3. The boundary trace and associated boundary value problems -- Chapter 4. Isolated singularities -- Chapter 5. Classical theory of maximal and large solutions -- Chapter 6. Further results on singularities and large solutions -- Bibliography -- Index
Record Nr. UNINA-9910816361903321
Marcus M (Moshe), <1937->  
Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co. KG, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui