Limiting equations for problems involving long range memory / / M. Marcus and Victor Mizel |
Autore | Marcus M (Moshe), <1937-> |
Pubbl/distr/stampa | Providence, R.I., USA : , : American Mathematical Socieity, , [1983] |
Descrizione fisica | 1 online resource (68 p.) |
Disciplina |
510 s
514/.322 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Topological dynamics
Volterra equations |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0688-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""IV. Condition for Precompactness in H of Positive Translates of an H-operator""""V. Limiting Equations""; ""5.1 Ω-limiting set of a solution""; ""5.2�5.3 Existence for limiting equations defined on the entire line""; ""5.4�5.5 Limiting set and limiting equation for a family of solutions""; ""VI. Generalization to Non-BV Outputs""; ""6.1�6.2 Weakly H-operators""; ""VII. Applications to Hammerstein Hereditary Operators I""; ""7.1�7.4 Hammerstein hereditary operators""; ""7.5�7.6 Proof that Hammerstein hereditary operators belong to H""
""7.7�7.11 Verification that 'regular' Hammerstein hereditary operators are uniform H-operators and their positive translates are precompact in H""""7.12�7.14 Representation theorem for limiting equations of a regular Hammerstein hereditary equation""; ""VIII. Applications to Functional Differential Equations""; ""8.1 Associating an H-operator to an FDE""; ""8.2�8.3 Quasi-uniform H-operators, the class H[sub(a)]""; ""8.4�8.7 Normalized translates, modified limiting sets of solutions""; ""8.8�8.10 Existence of a limiting equation"" ""8.11�8.12 A condition ensuring that limiting equations are also FDE's""""IX. Applications to Hammerstein Hereditary Operators II""; ""9.1�9.2 Hammerstein hereditary operators with nonautonomous kernel""; ""9.3�9.4 Proof that such operators belong to H""; ""9.5�9.6 Conditions for regularity""; ""9.7�9.9 Verification that 'regular' Hammerstein hereditary operators are uniform H-operators and their positive translates are precompact in H""; ""9.10 Representation theorem for limiting equations of a regular Hammerstein hereditary equation""; ""Acknowledgment""; ""Bibliography"" |
Record Nr. | UNINA-9910480466103321 |
Marcus M (Moshe), <1937-> | ||
Providence, R.I., USA : , : American Mathematical Socieity, , [1983] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Limiting equations for problems involving long range memory / / M. Marcus and Victor Mizel |
Autore | Marcus M (Moshe), <1937-> |
Pubbl/distr/stampa | Providence, R.I., USA : , : American Mathematical Socieity, , [1983] |
Descrizione fisica | 1 online resource (68 p.) |
Disciplina |
510 s
514/.322 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Topological dynamics
Volterra equations |
ISBN | 1-4704-0688-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""IV. Condition for Precompactness in H of Positive Translates of an H-operator""""V. Limiting Equations""; ""5.1 Ω-limiting set of a solution""; ""5.2�5.3 Existence for limiting equations defined on the entire line""; ""5.4�5.5 Limiting set and limiting equation for a family of solutions""; ""VI. Generalization to Non-BV Outputs""; ""6.1�6.2 Weakly H-operators""; ""VII. Applications to Hammerstein Hereditary Operators I""; ""7.1�7.4 Hammerstein hereditary operators""; ""7.5�7.6 Proof that Hammerstein hereditary operators belong to H""
""7.7�7.11 Verification that 'regular' Hammerstein hereditary operators are uniform H-operators and their positive translates are precompact in H""""7.12�7.14 Representation theorem for limiting equations of a regular Hammerstein hereditary equation""; ""VIII. Applications to Functional Differential Equations""; ""8.1 Associating an H-operator to an FDE""; ""8.2�8.3 Quasi-uniform H-operators, the class H[sub(a)]""; ""8.4�8.7 Normalized translates, modified limiting sets of solutions""; ""8.8�8.10 Existence of a limiting equation"" ""8.11�8.12 A condition ensuring that limiting equations are also FDE's""""IX. Applications to Hammerstein Hereditary Operators II""; ""9.1�9.2 Hammerstein hereditary operators with nonautonomous kernel""; ""9.3�9.4 Proof that such operators belong to H""; ""9.5�9.6 Conditions for regularity""; ""9.7�9.9 Verification that 'regular' Hammerstein hereditary operators are uniform H-operators and their positive translates are precompact in H""; ""9.10 Representation theorem for limiting equations of a regular Hammerstein hereditary equation""; ""Acknowledgment""; ""Bibliography"" |
Record Nr. | UNINA-9910788898603321 |
Marcus M (Moshe), <1937-> | ||
Providence, R.I., USA : , : American Mathematical Socieity, , [1983] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Limiting equations for problems involving long range memory / / M. Marcus and Victor Mizel |
Autore | Marcus M (Moshe), <1937-> |
Pubbl/distr/stampa | Providence, R.I., USA : , : American Mathematical Socieity, , [1983] |
Descrizione fisica | 1 online resource (68 p.) |
Disciplina |
510 s
514/.322 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Topological dynamics
Volterra equations |
ISBN | 1-4704-0688-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""IV. Condition for Precompactness in H of Positive Translates of an H-operator""""V. Limiting Equations""; ""5.1 Ω-limiting set of a solution""; ""5.2�5.3 Existence for limiting equations defined on the entire line""; ""5.4�5.5 Limiting set and limiting equation for a family of solutions""; ""VI. Generalization to Non-BV Outputs""; ""6.1�6.2 Weakly H-operators""; ""VII. Applications to Hammerstein Hereditary Operators I""; ""7.1�7.4 Hammerstein hereditary operators""; ""7.5�7.6 Proof that Hammerstein hereditary operators belong to H""
""7.7�7.11 Verification that 'regular' Hammerstein hereditary operators are uniform H-operators and their positive translates are precompact in H""""7.12�7.14 Representation theorem for limiting equations of a regular Hammerstein hereditary equation""; ""VIII. Applications to Functional Differential Equations""; ""8.1 Associating an H-operator to an FDE""; ""8.2�8.3 Quasi-uniform H-operators, the class H[sub(a)]""; ""8.4�8.7 Normalized translates, modified limiting sets of solutions""; ""8.8�8.10 Existence of a limiting equation"" ""8.11�8.12 A condition ensuring that limiting equations are also FDE's""""IX. Applications to Hammerstein Hereditary Operators II""; ""9.1�9.2 Hammerstein hereditary operators with nonautonomous kernel""; ""9.3�9.4 Proof that such operators belong to H""; ""9.5�9.6 Conditions for regularity""; ""9.7�9.9 Verification that 'regular' Hammerstein hereditary operators are uniform H-operators and their positive translates are precompact in H""; ""9.10 Representation theorem for limiting equations of a regular Hammerstein hereditary equation""; ""Acknowledgment""; ""Bibliography"" |
Record Nr. | UNINA-9910817126503321 |
Marcus M (Moshe), <1937-> | ||
Providence, R.I., USA : , : American Mathematical Socieity, , [1983] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nonlinear second order elliptic equations involving measures / / Moshe Marcus, Laurent Véron |
Autore | Marcus M (Moshe), <1937-> |
Pubbl/distr/stampa | Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co. KG, , [2014] |
Descrizione fisica | 1 online resource (264 p.) |
Disciplina | 515/.3533 |
Altri autori (Persone) | VéronLaurent |
Collana |
De Gruyter Series in Nonlinear Analysis and Applications
De Gruyter series in nonlinear analysis and applications |
Soggetto topico |
Differential equations, Elliptic
Differential equations, Nonlinear |
Soggetto genere / forma | Electronic books. |
ISBN | 3-11-030531-3 |
Classificazione | SK 540 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface -- Contents -- Chapter 1. Linear second order elliptic equations with measure data -- Chapter 2. Nonlinear second order elliptic equations with measure data -- Chapter 3. The boundary trace and associated boundary value problems -- Chapter 4. Isolated singularities -- Chapter 5. Classical theory of maximal and large solutions -- Chapter 6. Further results on singularities and large solutions -- Bibliography -- Index |
Record Nr. | UNINA-9910453761203321 |
Marcus M (Moshe), <1937-> | ||
Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co. KG, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nonlinear second order elliptic equations involving measures / / Moshe Marcus, Laurent Véron |
Autore | Marcus M (Moshe), <1937-> |
Pubbl/distr/stampa | Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co. KG, , [2014] |
Descrizione fisica | 1 online resource (264 p.) |
Disciplina | 515/.3533 |
Altri autori (Persone) | VéronLaurent |
Collana |
De Gruyter Series in Nonlinear Analysis and Applications
De Gruyter series in nonlinear analysis and applications |
Soggetto topico |
Differential equations, Elliptic
Differential equations, Nonlinear |
Soggetto non controllato |
Boundary trace
Elliptic equations Large solutions Singularities Subcritical nonlinearity |
ISBN | 3-11-030531-3 |
Classificazione | SK 540 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface -- Contents -- Chapter 1. Linear second order elliptic equations with measure data -- Chapter 2. Nonlinear second order elliptic equations with measure data -- Chapter 3. The boundary trace and associated boundary value problems -- Chapter 4. Isolated singularities -- Chapter 5. Classical theory of maximal and large solutions -- Chapter 6. Further results on singularities and large solutions -- Bibliography -- Index |
Record Nr. | UNINA-9910790833303321 |
Marcus M (Moshe), <1937-> | ||
Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co. KG, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nonlinear second order elliptic equations involving measures / / Moshe Marcus, Laurent Véron |
Autore | Marcus M (Moshe), <1937-> |
Pubbl/distr/stampa | Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co. KG, , [2014] |
Descrizione fisica | 1 online resource (264 p.) |
Disciplina | 515/.3533 |
Altri autori (Persone) | VéronLaurent |
Collana |
De Gruyter Series in Nonlinear Analysis and Applications
De Gruyter series in nonlinear analysis and applications |
Soggetto topico |
Differential equations, Elliptic
Differential equations, Nonlinear |
Soggetto non controllato |
Boundary trace
Elliptic equations Large solutions Singularities Subcritical nonlinearity |
ISBN | 3-11-030531-3 |
Classificazione | SK 540 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface -- Contents -- Chapter 1. Linear second order elliptic equations with measure data -- Chapter 2. Nonlinear second order elliptic equations with measure data -- Chapter 3. The boundary trace and associated boundary value problems -- Chapter 4. Isolated singularities -- Chapter 5. Classical theory of maximal and large solutions -- Chapter 6. Further results on singularities and large solutions -- Bibliography -- Index |
Record Nr. | UNINA-9910816361903321 |
Marcus M (Moshe), <1937-> | ||
Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co. KG, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|