top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems / / P. Lochak, J.-P. Marco, D. Sauzin
On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems / / P. Lochak, J.-P. Marco, D. Sauzin
Autore Lochak P (Pierre)
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2003
Descrizione fisica 1 online resource (162 p.)
Disciplina 510 s
514/.74
Collana Memoirs of the American Mathematical Society
Soggetto topico Hamiltonian systems
Invariant manifolds
Soggetto genere / forma Electronic books.
ISBN 1-4704-0373-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 0. Introduction and Some Salient Features of the Model Hamiltonian""; ""Chapter 1. Symplectic Geometry and the Splitting of Invariant Manifolds""; ""Â 1.1. Symplectic geometry: a short reminder""; ""Â 1.2. Hyperbolic invariant manifolds""; ""Â 1.3. Angles of Lagrangian planes: the symplectic viewpoint""; ""Â 1.4. Angles of Lagrangian planes: the Euclidean viewpoint""; ""Â 1.5. Symplectic isomorphisms, angles and splitting forms""; ""Â 1.6. The splitting of Lagrangian submanifolds""; ""Â 1.7. Lagrangian submanifolds in a cotangent bundle""
""Â 1.8. Hyperbolic tori and normally hyperbolic invariant manifolds""""Â 1.9. The perturbative setting""; ""Â 1.10. Lagrangian intersections and homoclinic trajectories""; ""Â 1.11. The splitting of the invariant manifolds of hyperbolic tori""; ""Chapter 2. Estimating the Splitting Matrix Using Normal Forms""; ""Â 2.1. Resonant normal forms""; ""Â 2.2. Computations in the vicinity of a resonant surface""; ""Â 2.3. Splitting in a perturbative setting, variance and stability""; ""Â 2.4. General exponential estimates for the splitting matrix""
"" 2.5. Persistence of tori, invariant manifolds and homoclinic trajectories"""" 2.6. Splitting and stability""; ""Chapter 3. The Hamilton�Jacobi Method for a Simple Resonance""; "" 3.1. Notation and assumptions""; "" 3.2. Formal solutions and the Hamilton�Jacobi algorithm""; "" 3.3. Convergence and domains of analyticity""; "" 3.4. Exponential closeness of the invariant manifolds""; "" 3.5. Linear versus nonlinear splitting""; "" 3.6. Some variants and possible generalizations""; "" 3.7. A short historical tour and some concluding remarks""
""Appendix. Invariant Tori With Vanishing or Zero Torsion""""Bibliography ""
Record Nr. UNINA-9910480523103321
Lochak P (Pierre)  
Providence, Rhode Island : , : American Mathematical Society, , 2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems / / P. Lochak, J.-P. Marco, D. Sauzin
On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems / / P. Lochak, J.-P. Marco, D. Sauzin
Autore Lochak P (Pierre)
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2003
Descrizione fisica 1 online resource (162 p.)
Disciplina 510 s
514/.74
Collana Memoirs of the American Mathematical Society
Soggetto topico Hamiltonian systems
Invariant manifolds
ISBN 1-4704-0373-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 0. Introduction and Some Salient Features of the Model Hamiltonian""; ""Chapter 1. Symplectic Geometry and the Splitting of Invariant Manifolds""; ""Â 1.1. Symplectic geometry: a short reminder""; ""Â 1.2. Hyperbolic invariant manifolds""; ""Â 1.3. Angles of Lagrangian planes: the symplectic viewpoint""; ""Â 1.4. Angles of Lagrangian planes: the Euclidean viewpoint""; ""Â 1.5. Symplectic isomorphisms, angles and splitting forms""; ""Â 1.6. The splitting of Lagrangian submanifolds""; ""Â 1.7. Lagrangian submanifolds in a cotangent bundle""
""Â 1.8. Hyperbolic tori and normally hyperbolic invariant manifolds""""Â 1.9. The perturbative setting""; ""Â 1.10. Lagrangian intersections and homoclinic trajectories""; ""Â 1.11. The splitting of the invariant manifolds of hyperbolic tori""; ""Chapter 2. Estimating the Splitting Matrix Using Normal Forms""; ""Â 2.1. Resonant normal forms""; ""Â 2.2. Computations in the vicinity of a resonant surface""; ""Â 2.3. Splitting in a perturbative setting, variance and stability""; ""Â 2.4. General exponential estimates for the splitting matrix""
"" 2.5. Persistence of tori, invariant manifolds and homoclinic trajectories"""" 2.6. Splitting and stability""; ""Chapter 3. The Hamilton�Jacobi Method for a Simple Resonance""; "" 3.1. Notation and assumptions""; "" 3.2. Formal solutions and the Hamilton�Jacobi algorithm""; "" 3.3. Convergence and domains of analyticity""; "" 3.4. Exponential closeness of the invariant manifolds""; "" 3.5. Linear versus nonlinear splitting""; "" 3.6. Some variants and possible generalizations""; "" 3.7. A short historical tour and some concluding remarks""
""Appendix. Invariant Tori With Vanishing or Zero Torsion""""Bibliography ""
Record Nr. UNINA-9910788849003321
Lochak P (Pierre)  
Providence, Rhode Island : , : American Mathematical Society, , 2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems / / P. Lochak, J.-P. Marco, D. Sauzin
On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems / / P. Lochak, J.-P. Marco, D. Sauzin
Autore Lochak P (Pierre)
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2003
Descrizione fisica 1 online resource (162 p.)
Disciplina 510 s
514/.74
Collana Memoirs of the American Mathematical Society
Soggetto topico Hamiltonian systems
Invariant manifolds
ISBN 1-4704-0373-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 0. Introduction and Some Salient Features of the Model Hamiltonian""; ""Chapter 1. Symplectic Geometry and the Splitting of Invariant Manifolds""; ""Â 1.1. Symplectic geometry: a short reminder""; ""Â 1.2. Hyperbolic invariant manifolds""; ""Â 1.3. Angles of Lagrangian planes: the symplectic viewpoint""; ""Â 1.4. Angles of Lagrangian planes: the Euclidean viewpoint""; ""Â 1.5. Symplectic isomorphisms, angles and splitting forms""; ""Â 1.6. The splitting of Lagrangian submanifolds""; ""Â 1.7. Lagrangian submanifolds in a cotangent bundle""
""Â 1.8. Hyperbolic tori and normally hyperbolic invariant manifolds""""Â 1.9. The perturbative setting""; ""Â 1.10. Lagrangian intersections and homoclinic trajectories""; ""Â 1.11. The splitting of the invariant manifolds of hyperbolic tori""; ""Chapter 2. Estimating the Splitting Matrix Using Normal Forms""; ""Â 2.1. Resonant normal forms""; ""Â 2.2. Computations in the vicinity of a resonant surface""; ""Â 2.3. Splitting in a perturbative setting, variance and stability""; ""Â 2.4. General exponential estimates for the splitting matrix""
"" 2.5. Persistence of tori, invariant manifolds and homoclinic trajectories"""" 2.6. Splitting and stability""; ""Chapter 3. The Hamilton�Jacobi Method for a Simple Resonance""; "" 3.1. Notation and assumptions""; "" 3.2. Formal solutions and the Hamilton�Jacobi algorithm""; "" 3.3. Convergence and domains of analyticity""; "" 3.4. Exponential closeness of the invariant manifolds""; "" 3.5. Linear versus nonlinear splitting""; "" 3.6. Some variants and possible generalizations""; "" 3.7. A short historical tour and some concluding remarks""
""Appendix. Invariant Tori With Vanishing or Zero Torsion""""Bibliography ""
Record Nr. UNINA-9910813657203321
Lochak P (Pierre)  
Providence, Rhode Island : , : American Mathematical Society, , 2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui