On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems / / P. Lochak, J.-P. Marco, D. Sauzin |
Autore | Lochak P (Pierre) |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2003 |
Descrizione fisica | 1 online resource (162 p.) |
Disciplina |
510 s
514/.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hamiltonian systems
Invariant manifolds |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0373-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 0. Introduction and Some Salient Features of the Model Hamiltonian""; ""Chapter 1. Symplectic Geometry and the Splitting of Invariant Manifolds""; ""Â 1.1. Symplectic geometry: a short reminder""; ""Â 1.2. Hyperbolic invariant manifolds""; ""Â 1.3. Angles of Lagrangian planes: the symplectic viewpoint""; ""Â 1.4. Angles of Lagrangian planes: the Euclidean viewpoint""; ""Â 1.5. Symplectic isomorphisms, angles and splitting forms""; ""Â 1.6. The splitting of Lagrangian submanifolds""; ""Â 1.7. Lagrangian submanifolds in a cotangent bundle""
"" 1.8. Hyperbolic tori and normally hyperbolic invariant manifolds"""" 1.9. The perturbative setting""; "" 1.10. Lagrangian intersections and homoclinic trajectories""; "" 1.11. The splitting of the invariant manifolds of hyperbolic tori""; ""Chapter 2. Estimating the Splitting Matrix Using Normal Forms""; "" 2.1. Resonant normal forms""; "" 2.2. Computations in the vicinity of a resonant surface""; "" 2.3. Splitting in a perturbative setting, variance and stability""; "" 2.4. General exponential estimates for the splitting matrix"" "" 2.5. Persistence of tori, invariant manifolds and homoclinic trajectories"""" 2.6. Splitting and stability""; ""Chapter 3. The Hamilton�Jacobi Method for a Simple Resonance""; "" 3.1. Notation and assumptions""; "" 3.2. Formal solutions and the Hamilton�Jacobi algorithm""; "" 3.3. Convergence and domains of analyticity""; "" 3.4. Exponential closeness of the invariant manifolds""; "" 3.5. Linear versus nonlinear splitting""; "" 3.6. Some variants and possible generalizations""; "" 3.7. A short historical tour and some concluding remarks"" ""Appendix. Invariant Tori With Vanishing or Zero Torsion""""Bibliography "" |
Record Nr. | UNINA-9910480523103321 |
Lochak P (Pierre) | ||
Providence, Rhode Island : , : American Mathematical Society, , 2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems / / P. Lochak, J.-P. Marco, D. Sauzin |
Autore | Lochak P (Pierre) |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2003 |
Descrizione fisica | 1 online resource (162 p.) |
Disciplina |
510 s
514/.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hamiltonian systems
Invariant manifolds |
ISBN | 1-4704-0373-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 0. Introduction and Some Salient Features of the Model Hamiltonian""; ""Chapter 1. Symplectic Geometry and the Splitting of Invariant Manifolds""; ""Â 1.1. Symplectic geometry: a short reminder""; ""Â 1.2. Hyperbolic invariant manifolds""; ""Â 1.3. Angles of Lagrangian planes: the symplectic viewpoint""; ""Â 1.4. Angles of Lagrangian planes: the Euclidean viewpoint""; ""Â 1.5. Symplectic isomorphisms, angles and splitting forms""; ""Â 1.6. The splitting of Lagrangian submanifolds""; ""Â 1.7. Lagrangian submanifolds in a cotangent bundle""
"" 1.8. Hyperbolic tori and normally hyperbolic invariant manifolds"""" 1.9. The perturbative setting""; "" 1.10. Lagrangian intersections and homoclinic trajectories""; "" 1.11. The splitting of the invariant manifolds of hyperbolic tori""; ""Chapter 2. Estimating the Splitting Matrix Using Normal Forms""; "" 2.1. Resonant normal forms""; "" 2.2. Computations in the vicinity of a resonant surface""; "" 2.3. Splitting in a perturbative setting, variance and stability""; "" 2.4. General exponential estimates for the splitting matrix"" "" 2.5. Persistence of tori, invariant manifolds and homoclinic trajectories"""" 2.6. Splitting and stability""; ""Chapter 3. The Hamilton�Jacobi Method for a Simple Resonance""; "" 3.1. Notation and assumptions""; "" 3.2. Formal solutions and the Hamilton�Jacobi algorithm""; "" 3.3. Convergence and domains of analyticity""; "" 3.4. Exponential closeness of the invariant manifolds""; "" 3.5. Linear versus nonlinear splitting""; "" 3.6. Some variants and possible generalizations""; "" 3.7. A short historical tour and some concluding remarks"" ""Appendix. Invariant Tori With Vanishing or Zero Torsion""""Bibliography "" |
Record Nr. | UNINA-9910788849003321 |
Lochak P (Pierre) | ||
Providence, Rhode Island : , : American Mathematical Society, , 2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems / / P. Lochak, J.-P. Marco, D. Sauzin |
Autore | Lochak P (Pierre) |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2003 |
Descrizione fisica | 1 online resource (162 p.) |
Disciplina |
510 s
514/.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hamiltonian systems
Invariant manifolds |
ISBN | 1-4704-0373-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 0. Introduction and Some Salient Features of the Model Hamiltonian""; ""Chapter 1. Symplectic Geometry and the Splitting of Invariant Manifolds""; ""Â 1.1. Symplectic geometry: a short reminder""; ""Â 1.2. Hyperbolic invariant manifolds""; ""Â 1.3. Angles of Lagrangian planes: the symplectic viewpoint""; ""Â 1.4. Angles of Lagrangian planes: the Euclidean viewpoint""; ""Â 1.5. Symplectic isomorphisms, angles and splitting forms""; ""Â 1.6. The splitting of Lagrangian submanifolds""; ""Â 1.7. Lagrangian submanifolds in a cotangent bundle""
"" 1.8. Hyperbolic tori and normally hyperbolic invariant manifolds"""" 1.9. The perturbative setting""; "" 1.10. Lagrangian intersections and homoclinic trajectories""; "" 1.11. The splitting of the invariant manifolds of hyperbolic tori""; ""Chapter 2. Estimating the Splitting Matrix Using Normal Forms""; "" 2.1. Resonant normal forms""; "" 2.2. Computations in the vicinity of a resonant surface""; "" 2.3. Splitting in a perturbative setting, variance and stability""; "" 2.4. General exponential estimates for the splitting matrix"" "" 2.5. Persistence of tori, invariant manifolds and homoclinic trajectories"""" 2.6. Splitting and stability""; ""Chapter 3. The Hamilton�Jacobi Method for a Simple Resonance""; "" 3.1. Notation and assumptions""; "" 3.2. Formal solutions and the Hamilton�Jacobi algorithm""; "" 3.3. Convergence and domains of analyticity""; "" 3.4. Exponential closeness of the invariant manifolds""; "" 3.5. Linear versus nonlinear splitting""; "" 3.6. Some variants and possible generalizations""; "" 3.7. A short historical tour and some concluding remarks"" ""Appendix. Invariant Tori With Vanishing or Zero Torsion""""Bibliography "" |
Record Nr. | UNINA-9910813657203321 |
Lochak P (Pierre) | ||
Providence, Rhode Island : , : American Mathematical Society, , 2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|