top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Calculus of variations and nonlinear partial differential equations : lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 27-July 2, 2005 / / Luigi Ambrosio ; edited by Bernard Dacorogna, Paolo Marcellini
Calculus of variations and nonlinear partial differential equations : lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 27-July 2, 2005 / / Luigi Ambrosio ; edited by Bernard Dacorogna, Paolo Marcellini
Autore Ambrosio Luigi
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Berlin, Germany : , : Springer, , [2008]
Descrizione fisica 1 online resource (XI, 206 p.)
Disciplina 515.64
Collana C.I.M.E. Foundation Subseries
Soggetto topico Differential equations, Partial
Calculus of variations
ISBN 3-540-75914-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Transport Equation and Cauchy Problem for Non-Smooth Vector Fields -- Issues in Homogenization for Problems with Non Divergence Structure -- A Visit with the ?-Laplace Equation -- Weak KAM Theory and Partial Differential Equations -- Geometrical Aspects of Symmetrization -- CIME Courses on Partial Differential Equations and Calculus of Variations.
Record Nr. UNISA-996466510903316
Ambrosio Luigi  
Berlin, Germany : , : Springer, , [2008]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Calculus of Variations and Nonlinear Partial Differential Equations : Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 27 - July 2, 2005 / / by Luigi Ambrosio, Luis A. Caffarelli, Michael G. Crandall, Lawrence C. Evans, Nicola Fusco ; edited by Bernard Dacorogna, Paolo Marcellini
Calculus of Variations and Nonlinear Partial Differential Equations : Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 27 - July 2, 2005 / / by Luigi Ambrosio, Luis A. Caffarelli, Michael G. Crandall, Lawrence C. Evans, Nicola Fusco ; edited by Bernard Dacorogna, Paolo Marcellini
Autore Ambrosio Luigi
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2008
Descrizione fisica 1 online resource (XI, 206 p.)
Disciplina 515.64
Collana C.I.M.E. Foundation Subseries
Soggetto topico Mathematical optimization
Calculus of variations
Differential equations
Calculus of Variations and Optimization
Differential Equations
ISBN 9783540759140
354075914X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Transport Equation and Cauchy Problem for Non-Smooth Vector Fields -- Issues in Homogenization for Problems with Non Divergence Structure -- A Visit with the ?-Laplace Equation -- Weak KAM Theory and Partial Differential Equations -- Geometrical Aspects of Symmetrization -- CIME Courses on Partial Differential Equations and Calculus of Variations.
Record Nr. UNINA-9910483843703321
Ambrosio Luigi  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical analysis : functions of several real variables and applications / / Nicola Fusco, Paolo Marcellini, Carlo Sbordone
Mathematical analysis : functions of several real variables and applications / / Nicola Fusco, Paolo Marcellini, Carlo Sbordone
Autore Fusco Nicola <1956->
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (678 pages)
Disciplina 519.4
Collana Unitext - Matematica per il 3 + 2
Soggetto topico Numerical analysis
Anàlisi numèrica
Soggetto genere / forma Llibres electrònics
ISBN 3-031-04151-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Sequences and Series of Functions -- 1.1 Sequences of Functions: Pointwise and Uniform Convergence -- 1.2 First Theorems on Uniform Convergence -- 1.3 Theorems on Interchanging Limits and Integrals or Derivatives -- 1.4 Uniform Convergence and Monotonicity -- 1.5 Series of Functions -- 1.6 Power Series -- 1.7 Taylor Series -- 1.8 Fourier Series -- 1.9 The Convergence of Fourier Series -- Appendix to Chap.1 -- 1.10 The Ascoli-Arzelà Theorem -- 1.11 The Weierstrass Approximation Theorem -- 1.12 Abel's Theorem on Power Series -- 2 Metric Spaces and Banach Spaces -- 2.1 Introduction -- 2.2 Metric Spaces -- 2.3 Sequences in a Metric Space: Continuous Functions -- 2.4 Vector Spaces: Linear Maps -- 2.5 The Vector Space ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript bold italic n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark and Its Dual -- 2.6 Normed Vector Spaces -- 2.7 The Normed Vector Space ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript bold italic n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 2.8 Complete Metric Spaces: Banach Spaces -- 2.9 Lipschitz Functions: The Contraction Theorem -- 2.10 Compact Sets: Continuous Functions on Compact Sets -- 2.11 Connected Open Subsets of ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript bold italic n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- Appendix to Chap. 2 -- 2.12 Further Compactness Theorems: Generalised Weierstrass Theorem -- 3 Functions of Several Variables.
3.1 Round-Up of Topology in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript bold italic n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 3.2 Limits and Continuity -- 3.3 Partial Derivatives -- 3.4 Higher Derivatives. Schwarz's Theorem -- 3.5 Gradient. Differentiability -- 3.6 Composite Functions -- 3.7 Directional Derivatives -- 3.8 Functions with Vanishing Gradient on Connected Sets -- 3.9 Homogeneous Functions -- 3.10 Functions Defined by Integrals -- 3.11 Taylor Formula and Higher-Order Differentials -- 3.12 Quadratic Forms. Definite, Semi-definite and Indefinite Matrices -- 3.13 Local Maxima and Minima -- 3.14 Vector-Valued Functions -- Appendix to Chap.3 -- 3.15 Convex Functions -- 3.16 Complements on Quadratic Forms -- 3.17 The Maximum Principle for Harmonic Functions -- 4 Ordinary Differential Equations -- 4.1 Introduction: The Initial Value Problem -- 4.2 Cauchy's Local Existence and Uniqueness Theorem -- 4.3 First Consequences of Cauchy's Theorem -- 4.4 The Global Existence and Uniqueness Theorem: Extension of Solutions -- 4.5 Solving First-Order ODEs in Normal Form -- 4.6 Solving First-Order ODEs Not in Normal Form -- 4.7 Solving Higher-Order Equations -- 4.8 Qualitative Study of Solutions -- Appendix to Chap. 4 -- 4.9 Peano's Theorem -- 5 Linear Differential Equations -- 5.1 General Properties -- 5.2 General Integral of Linear ODEs -- 5.3 The Method of Variation of Parameters -- 5.4 Bernoulli Equations -- 5.5 Homogeneous Equations with Constant Coefficients -- 5.6 Equations with Constant Coefficients and Special Right-Hand Side -- 5.7 Linear Euler Equations -- Appendix to Chap.5 -- 5.8 Boundary Value Problems -- 5.9 Linear Systems -- 6 Curves and Integrals Along Curves -- 6.1 Regular Curves -- 6.2 Oriented Curves -- 6.3 The Length of a Curve.
6.4 The Integral of a Function Along a Curve -- 6.5 The Curvature of a Plane Curve -- 6.6 The Cross Product in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R cubed) /StPNE pdfmark [/StBMC pdfmarkR3ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 6.7 Biregular Curves in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R cubed) /StPNE pdfmark [/StBMC pdfmarkR3ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark: Curvature -- Appendix to Chap.6 -- 6.8 Curves in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R cubed) /StPNE pdfmark [/StBMC pdfmarkR3ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark: Torsion, Frenet Frame -- 7 Differential One-Forms -- 7.1 Vector Fields. Work. Conservative Fields -- 7.2 Differential 1-Forms. Line Integrals -- 7.3 Exact 1-Forms -- 7.4 Exact 1-Forms on the Plane. Simply Connected Open Sets in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R squared) /StPNE pdfmark [/StBMC pdfmarkR2ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 7.5 One-Forms in Space. Irrotational Vector Fields -- Appendix to Chap.7 -- 7.6 Simply Connected Open Sets in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark and Exact 1-Forms -- 8 Multiple Integrals -- 8.1 Double Integrals on Normal Domains -- 8.2 Reduction Formulas for Double Integrals -- 8.3 Gauss-Green Formulas. The Divergence Theorem. Stokes's Formula -- 8.4 Variable Change in Double Integrals -- 8.5 Triple Integrals -- 8.6 Peano-Jordan Measurable Subsets of ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript bold italic n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark.
8.7 The Riemann Integral in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript bold italic n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 8.8 Properties of Riemann Integrals -- 8.9 Summable Functions -- Appendix to Chap.8 -- 8.10 Jensen's Inequality -- 8.11 The Gamma Function. The Measure of the Unit Ball in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript bold italic n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 9 The Lebesgue Integral -- 9.1 Introduction -- 9.2 Pluri-Intervals. Open Sets. Compact Sets -- 9.3 Bounded Measurable Sets -- 9.4 Unbounded Measurable Sets -- 9.5 Measurable Functions -- 9.6 The Lebesgue Integral. Interchanging Limits and Integrals -- 9.7 Measure and Integration on Product Spaces -- 9.8 Changing Variables in Multiple Integrals -- Appendix to Chap.9 -- 9.9 Lp Spaces -- 9.10 Differentiability of Monotone Functions -- 9.11 Functions with Bounded Variation -- 9.12 Absolutely Continuous Functions -- 9.13 The Indefinite Integral in Lebesgue's Theory -- 10 Surfaces and Surface Integrals -- 10.1 Regular Surfaces -- 10.2 Local Coordinates and Change of Parameters -- 10.3 The Tangent Plane and the Unit Normal -- 10.4 The Area of a Surface -- 10.5 Orientable Surfaces: Surfaces with Boundary -- 10.6 Surface Integrals -- 10.7 Stokes's Formula and the Divergence Theorem -- 11 Implicit Functions -- 11.1 The Implicit Function Theorem for Equations -- 11.2 The Implicit Function Theorem for Systems -- 11.3 Local and Global Invertibility -- 11.4 Constrained Maxima and Minima. Lagrange Multipliers -- Appendix to Chap.11 -- 11.5 Singular Points of a Plane Curve -- 12 Manifolds in Rn and k-Forms.
12.1 k-Dimensional Manifolds in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 12.2 The Tangent Space and the Normal Space of a Manifold -- 12.3 Measure and Integration on k-Submanifolds in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 12.4 The Divergence Theorem -- 12.5 Alternating Forms -- 12.6 Differential k-Forms -- 12.7 Orientable Manifolds. Integration of k-Forms on Manifolds -- 12.8 Manifolds with Boundary. Stokes's Formula -- Appendix to Chap.12 -- 12.9 Exact and Closed Differential Forms -- Index.
Record Nr. UNISA-996503549503316
Fusco Nicola <1956->  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Mathematical Analysis : Functions of Several Real Variables and Applications / / by Nicola Fusco, Paolo Marcellini, Carlo Sbordone
Mathematical Analysis : Functions of Several Real Variables and Applications / / by Nicola Fusco, Paolo Marcellini, Carlo Sbordone
Autore Fusco Nicola <1956->
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (678 pages)
Disciplina 519.4
515
Collana La Matematica per il 3+2
Soggetto topico Numerical analysis
Numerical Analysis
ISBN 3-031-04151-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Sequences and Series of Functions -- 2 Metric Spaces and Banach Spaces -- 3 Functions of Several Variables -- 4 Ordinary Differential Equations -- 5 Linear Differential Equations -- 6 Curves and Integrals Along Curves -- 7 Differential One-Forms -- 8 Multiple Integrals -- 9 The Lebesgue Integral -- 10 Surfaces and Surface Integrals -- 11 Implicit Functions -- 12 Manifold in Rn and k-Forms.
Record Nr. UNINA-9910639895203321
Fusco Nicola <1956->  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Vector-Valued Partial Differential Equations and Applications [[electronic resource] ] : Cetraro, Italy 2013 / / by Bernard Dacorogna, Nicola Fusco, Stefan Müller, Vladimir Sverak ; edited by John Ball, Paolo Marcellini
Vector-Valued Partial Differential Equations and Applications [[electronic resource] ] : Cetraro, Italy 2013 / / by Bernard Dacorogna, Nicola Fusco, Stefan Müller, Vladimir Sverak ; edited by John Ball, Paolo Marcellini
Autore Dacorogna Bernard
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (VII, 250 p. 21 illus., 1 illus. in color.)
Disciplina 515.353
Collana C.I.M.E. Foundation Subseries
Soggetto topico Calculus of variations
Partial differential equations
Mathematical physics
Calculus of Variations and Optimal Control; Optimization
Partial Differential Equations
Mathematical Physics
ISBN 3-319-54514-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Bernard Dacorogna: The pullback equation -- Nicola Fusco: The stability of the isoperimetric inequality -- Stefan Müller: Mathematical problems in thin elastic sheets: scaling limits.-packing, crumpling and singularities -- Vladimir Sverák: Aspects of PDEs related to Fluid Flows.
Record Nr. UNISA-996466646403316
Dacorogna Bernard  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Vector-Valued Partial Differential Equations and Applications : Cetraro, Italy 2013 / / by Bernard Dacorogna, Nicola Fusco, Stefan Müller, Vladimir Sverak ; edited by John Ball, Paolo Marcellini
Vector-Valued Partial Differential Equations and Applications : Cetraro, Italy 2013 / / by Bernard Dacorogna, Nicola Fusco, Stefan Müller, Vladimir Sverak ; edited by John Ball, Paolo Marcellini
Autore Dacorogna Bernard
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (VII, 250 p. 21 illus., 1 illus. in color.)
Disciplina 515.353
Collana C.I.M.E. Foundation Subseries
Soggetto topico Mathematical optimization
Calculus of variations
Differential equations
Mathematical physics
Calculus of Variations and Optimization
Differential Equations
Mathematical Physics
ISBN 3-319-54514-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Bernard Dacorogna: The pullback equation -- Nicola Fusco: The stability of the isoperimetric inequality -- Stefan Müller: Mathematical problems in thin elastic sheets: scaling limits.-packing, crumpling and singularities -- Vladimir Sverák: Aspects of PDEs related to Fluid Flows.
Record Nr. UNINA-9910257380303321
Dacorogna Bernard  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui