top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biosystems, Biomedical and Drug Delivery Systems : Characterization, Restoration and Optimization
Biosystems, Biomedical and Drug Delivery Systems : Characterization, Restoration and Optimization
Autore Kulkarni Shrikaant
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer, , 2024
Descrizione fisica 1 online resource (376 pages)
Altri autori (Persone) HaghiA. K
ManwatkarSonali
ISBN 9789819725960
9789819725953
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Contributors -- Abbreviations -- List of Figures -- 1 Editorial: Future of Novel Technologies in Biosystems, Biomedical, and Drug Delivery -- 1.1 Nature and Characterization of Biosystems -- 1.2 Restoration of Biological Functions -- 1.3 Optimization of Drug Delivery -- 1.4 Conclusion -- Part I Novel Technologies in Biosystems, Biomedical, and Drug Delivery: Characterization -- 2 Characterization Tools for Current Drug Delivery Systems -- 2.1 Introduction -- 2.2 Techniques Employed in Characterizing Drug Delivery Systems -- 2.3 Determination of Particle Size -- 2.3.1 Utilizing Dynamic Light Scattering (DLS)/Photon Correlation Spectroscopy (PCS) Technique -- 2.3.2 Single-Particle Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) -- 2.4 Microscopic Characterization Techniques -- 2.4.1 Scanning Electron Microscopy (SEM) -- 2.4.2 Environmental Scanning Electron Microscopy (ESEM) -- 2.4.3 Field Emission Scanning Electron Microscopy (FESEM) -- 2.4.4 Transmission Electron Microscopy (TEM) -- 2.4.5 Confocal Laser Scanning Microscopy (CLSM) -- 2.4.6 Atomic Force Microscopy (AFM) -- 2.5 Compatibility Studies (Physical-Chemical Characterization) -- 2.5.1 Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC) -- 2.5.2 X-Ray Powder Diffraction (XRPD) -- 2.6 Fourier Transform Infrared Spectroscopy (FTIR) -- 2.7 Limitations of Existing Characterization Techniques -- 2.7.1 Dynamic Light Scattering (DLS)/Photon Correlation Spectroscopy (PCS) -- 2.7.2 Single-Particle Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) -- 2.7.3 Scanning Electron Microscopy (SEM) -- 2.7.4 Environmental Scanning Electron Microscopy (ESEM) -- 2.7.5 Field Emission Scanning Electron Microscopy (FESEM) -- 2.7.6 Transmission Electron Microscopy (TEM) -- 2.7.7 Confocal Laser Scanning Microscopy (CLSM) -- 2.7.8 Atomic Force Microscopy (AFM).
2.7.9 Differential Scanning Calorimetry (DSC)/Thermogravimetry (TG) -- 2.7.10 X-Ray Powder Diffraction (XRPD) -- 2.7.11 Fourier Transform Infrared Spectroscopy (FTIR) -- 2.8 Discussion -- References -- 3 Characterization of Transdermal Drug Delivery Systems: Retrospect and Future Prospects -- 3.1 Introduction -- 3.2 Historical Perspective -- 3.2.1 Early Transdermal Patches -- 3.2.2 Milestones in TDDS Evolution -- 3.3 Challenges in Transdermal Drug Delivery -- 3.3.1 Skin Barrier -- 3.3.2 Dose Limitations -- 3.3.3 Adhesion and Irritation -- 3.3.4 Variable Absorption -- 3.4 Future Prospects -- 3.4.1 Nanotechnology -- 3.4.2 Personalized TDDS -- 3.4.3 Biologics and Vaccines -- 3.4.4 Sustainable Materials -- 3.4.5 Continuous Monitoring -- 3.5 Synergistic Potential and the Challenges of Transdermal Drug Delivery System with Artificial Intelligence (AI) -- 3.5.1 Enhanced Drug Formulation and Design -- 3.5.2 Personalized Medicine -- 3.5.3 Predictive Modeling -- 3.5.4 Feedback Mechanisms -- 3.5.5 Data-Driven Optimization -- 3.5.6 Challenges and Considerations -- 3.6 Conclusion -- References -- 4 Analytical Tools for the Characterization of Nasal Spray Drug Products -- 4.1 Introduction -- 4.2 Physical Tests -- 4.2.1 Pump Delivery (Shot Weight) -- 4.2.2 Number of Actuations/Containers -- 4.2.3 Viscosity -- 4.2.4 Net Fill Content and Minimum Fill Justification -- 4.2.5 Osmolality -- 4.2.6 Priming and Repriming Study -- 4.2.7 Surface Tension -- 4.3 Nasal Spray Characterization Tests -- 4.3.1 Droplet Size Distribution (DSD) -- 4.3.2 Spray Pattern (SP) -- 4.4 Plume Geometry (PG) -- 4.4.1 Method Precision -- 4.4.2 Intermediate Precision -- 4.4.3 Robustness -- 4.5 Chemical Tests -- 4.5.1 Assay -- 4.5.2 Related Substances -- 4.5.3 Preservative Content -- 4.6 Conclusion -- References -- Part II Novel Technologies in Biosystems, Biomedical, and Drug Delivery: Restoration.
5 AI-Enabled Models in the Restoration of Drug Efficacy and Drug Design -- 5.1 Introduction -- 5.2 Traditional Drug Discovery Process: Challenges and Limitations -- 5.3 The Emergence of AI in Drug Discovery and Design -- 5.4 Data Collection and Management -- 5.5 Target Identification and Validation -- 5.5.1 Systematic Analysis of Biological Datasets -- 5.5.2 Precision in Target Selection -- 5.5.3 Reducing Late-Stage Failures -- 5.5.4 Streamlining Drug Development -- 5.6 Molecular Modeling and in Silico Drug Design -- 5.6.1 Enhanced Accuracy and Speed -- 5.6.2 Efficient Drug Candidate Assessment -- 5.6.3 Reducing Time and Resource Investment -- 5.6.4 Tailored Therapeutics -- 5.6.5 Iterative Improvement -- 5.7 High-Throughput Screening and Compound Selection -- 5.7.1 AI-Powered Robotic Systems -- 5.7.2 Machine Learning Algorithms -- 5.7.3 The Advantages of AI in Compound Selection -- 5.7.4 Comprehensive Screening of Compound Libraries -- 5.8 Predictive Toxicology and ADMET Evaluation -- 5.8.1 Traditional Challenges in Predictive Toxicology and ADMET Evaluation -- 5.8.2 The Role of AI in Predictive Toxicology -- 5.8.3 Optimizing ADMET Evaluation with AI -- 5.8.4 The Advantages of AI in Predictive Toxicology and ADMET Evaluation -- 5.9 Clinical Trial Optimization -- 5.9.1 Efficient Patient Recruitment -- 5.9.2 Personalized Trial Matching -- 5.9.3 Adaptive Clinical Trials -- 5.9.4 Enhanced Data Analysis -- 5.9.5 Benefits and Implications -- 5.10 Ethical and Regulatory Considerations -- 5.10.1 Ethical Considerations in AI-Driven Drug Discovery -- 5.10.2 Regulatory Challenges in an AI-Driven Landscape -- 5.10.3 Building Trust and Accountability -- 5.11 Challenges and Future Directions -- 5.12 Conclusions -- References -- 6 Restoration and Sustenance of Nano Drug Delivery Systems: Potential, Challenges, and Limitations -- 6.1 Introduction.
6.2 Conventional Drug Delivery Systems: Challenges and Limitations -- 6.2.1 Microspheres -- 6.2.2 Gels -- 6.2.3 Prodrugs -- 6.3 New Drug Carriers Systems -- 6.3.1 Polymeric Nanoparticles -- 6.3.2 Metal Nanoparticles and Quantum Dots -- 6.3.3 Micro and Nanosponges -- 6.3.4 Microsponges -- 6.3.5 Nanosponges -- 6.3.6 Vesicular System -- 6.3.7 Solid Lipid Nanoparticles (SLNs) -- 6.3.8 Nano-structured Lipid Carriers -- 6.3.9 Microemulsions -- 6.3.10 Nanoemulsions -- 6.3.11 Immunoconjugates -- 6.3.12 "In Situ Gel Drug Delivery System" -- 6.4 Challenges and Future Directions -- 6.5 Conclusion -- References -- 7 Artificial Intelligence and Machine Learning in Restoring and Strengthening HealthCare -- 7.1 Introduction to ML and AI -- 7.2 Tasks Machine Learning Can Handle Within Health Care -- 7.3 Opportunities and Prospects of Machine Learning Provides for Healthcare -- 7.4 Health Care Advantages of Machine Learning -- 7.5 Potential Applications of ML in Healthcare -- 7.5.1 Clinical Decision Support Systems (CDSS) -- 7.5.2 Smart Recordkeeping -- 7.5.3 Machine Learning in Medical Imaging -- 7.5.4 Personalized Medicine -- 7.5.5 Behavior Adjustments -- 7.5.6 Predictive Approach to Treatment -- 7.5.7 Data Collection -- 7.5.8 Elderly and Low-Mobility Groups Care -- 7.5.9 Robotic Surgery -- 7.6 Ethics of Employing ML in Healthcare -- 7.6.1 Data Security and Privacy -- 7.6.2 Issues with Autonomy -- 7.6.3 Patient Safety -- 7.6.4 Clear Communication and Informed Consent -- 7.6.5 Inclusion and Representation -- 7.7 ML Problems Within the Healthcare Sector -- 7.7.1 Inadequacy of Reliable Data to Develop Accurate Algorithms -- 7.7.2 Creating ML Tools that Are Compliant with Medical Workflow -- 7.7.3 Building Teams with Diverse Skill Sets in One Location -- 7.8 Future Scope -- References.
Part III Novel Technologies in Biosystems, Biomedical, and Drug Delivery: Optimization -- 8 Optimizing Oncology Tools: Organ-On-A-Clip Alternative to Animal Model -- 8.1 Introduction -- 8.2 Oncology: Challenges and Constraints in Drug Development -- 8.3 Primer for the Organ-On-A-Chip (OoC) -- 8.3.1 Drug Screening and Development -- 8.3.2 Personalized Medicine -- 8.3.3 Microenvironment Replication -- 8.3.4 Metastasis Studies -- 8.3.5 Evaluation of Therapeutic Resistance -- 8.3.6 Reducing Dependency on Animal Models -- 8.3.7 Integration with Microfluidics -- 8.4 Design of OoC Devices -- 8.5 OoCs Based Platforms for Novel Drug Development -- 8.6 Microfluidic Systems in Cancer Investigation -- 8.7 Utilizing Microfluidics for Isolation of Circulating Tumour Cell (CTC) -- 8.8 Application of Microfluidic Platforms for Analysis of Cancer Cell Phenotype -- 8.9 Device for Exploring Metastasis Using Microfluidics -- 8.10 The Implementation Process of Constructing the Tumor Microenvironment -- 8.11 Conclusion -- References -- 9 Optimizing Drug Synthesis: AI-Powered Kinetics Study in Pharmaceutical Research -- 9.1 Introduction -- 9.1.1 The Evolution of AI and ML in Drug Discovery -- 9.1.2 The Role of Kinetics in Drug Synthesis -- 9.2 Foundations of AI and ML in Drug Synthesis -- 9.2.1 Machine Learning Algorithms for Kinetics Prediction -- 9.2.2 Data Sources and Data Preprocessing -- 9.2.3 Model Validation and Performance Metrics -- 9.3 Predicting Reaction Rates -- 9.3.1 AI/ML Models for Reaction Rate Prediction -- 9.3.2 Reaction Mechanism and Rate-Determining Steps -- 9.3.3 Case Studies Related to Reaction Rate Prediction -- 9.4 Optimizing Reaction Conditions -- 9.4.1 Optimizing Techniques and Algorithms -- 9.4.2 Bayesian Optimization in Drug Synthesis -- 9.5 Understanding Reaction Mechanisms -- 9.5.1 Deep Learning Approaches to Reaction Mechanism Elucidation.
9.5.2 Reaction Pathways and Transition State Modeling.
Record Nr. UNINA-9910865242803321
Kulkarni Shrikaant  
Singapore : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Novel Technologies in Biosystems, Biomedical and Drug Delivery / / edited by Shrikaant Kulkarni, A. K. Haghi, and Sonali Manwatkar
Novel Technologies in Biosystems, Biomedical and Drug Delivery / / edited by Shrikaant Kulkarni, A. K. Haghi, and Sonali Manwatkar
Edizione [First edition.]
Pubbl/distr/stampa Singapore : , : Springer, , [2023]
Descrizione fisica 1 online resource (0 pages)
Disciplina 610.28
Soggetto topico Biomedical engineering
Drug delivery systems - Technological innovations
ISBN 981-9952-81-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Contributors -- Abbreviations -- Biosystems: Nature, Relevance and Significance -- Editorial: Bio-Systems: Relevance, Reflection and Impact -- 1 Introduction -- 2 Relevance -- 3 Reflection -- 4 Impact -- 5 System Biology -- 6 Applications -- 7 Regulation of BSs -- 8 Conclusion -- Potential of Biotechnology in Cancer Management -- 1 Introduction -- 2 Current Cancer Epidemiology -- 3 Biotechnology in Cancer Therapy -- 3.1 Monoclonal Antibody -- 3.2 Stem Cell Therapy -- 3.3 Gene Therapy -- 3.4 CAR-T/NK Cell Therapy -- 3.5 Engineered Cytokines -- 3.6 Strategies for Cytokine Engineering -- 3.7 Methods of Cytokine Delivery -- 3.8 Cancer Vaccines -- 3.9 Shared Vaccines -- 3.10 Personalized Vaccines -- 3.11 Ex Vivo Vaccines -- 3.12 In Situ Vaccines -- 3.13 Vaccine Delivery Vehicles -- 4 Biotechnology Approaches Over Traditional Therapy -- 5 Combination Therapy Involving Biotechnology -- 6 Conclusion and Future Perspectives -- References -- Biosimilars: Promising and Rapidly Emerging Biotherapeutics -- 1 Introduction -- 2 Biosimilar Primer -- 3 Biosimilars Approval and Regulatory Requirements -- 4 Biosimilar Manufacturing Process -- 4.1 Choosing a Reference Biological -- 4.2 Process of Manufacturing -- 4.3 Quality Control Consideration -- 5 Specification -- 6 Stability -- 7 Comparison and Quality Analysis -- 8 Nonclinical Studies Data Requirements -- 8.1 Prerequisite Before Conducting Nonclinical Studies -- 8.2 Early-Stage Research Pharmacodynamic and Toxicology Studies -- 9 Toxicological Studies -- 10 Immunogenicity -- 11 Application Data Requirements for Clinical Trials -- 12 Data Requirements for Market Authorization Applications -- 13 Pharmacovigilance Strategy -- 14 Post-marketing Analysis (Phase IV Study) -- 15 Exceptions -- References -- Biomedicine: Trends, Challenges, Prospects.
Applications of Nanomaterials in Medicine: Current Status and Future Scope -- 1 Introduction -- 2 Nanomedicine-Shifting the Paradigm in Medicine -- 3 Role of Nanomaterials in Treatment -- 3.1 Application of Nanomaterials as Antimicrobial and Antiviral Agents -- 4 Cancers -- 4.1 Breast Cancer -- 4.2 Lung Cancer -- 4.3 Oral Cancer -- 4.4 Pancreatic Cancer -- 4.5 Leukemia -- 5 Respiratory Disorders -- 5.1 COPD -- 5.2 Asthma -- 5.3 Pneumonia -- 5.4 Cystic Fibrosis -- 6 Ocular Diseases -- 6.1 Glaucoma -- 6.2 Cataract -- 6.3 Pterygium -- 6.4 Conjunctivitis -- 7 Disease of Immune System -- 7.1 Arthritis -- 7.2 Aids -- 7.3 Autoimmune Disease -- 7.4 Disease of Thyroid Gland -- 8 Cardiovascular Diseases -- 8.1 Ischemic Heart Diseases -- 8.2 Arteriosclerosis -- 8.3 Atherosclerosis -- 9 Metabolic Disorders -- 9.1 Diabetes -- 9.2 Inflammatory Bowel Disease -- 9.3 Hyperlipidemia -- 10 Tissue Engineering -- 10.1 Periodontitis -- 10.2 Bone Tissue -- 10.3 Regeneration of Nerves -- 11 Role of Nanomaterials in Diagnosis -- 11.1 Detection of Pathogens -- 11.2 Role in Imaging -- 12 Manipulation of Cells and DNA Tagging -- 13 Dual Nanotools for Diagnostics and Therapeutics -- 14 Nanomaterials-Drug Delivery and Bioavailability -- 15 Environmental Considerations -- 16 Future Scope of Nanomedicine -- References -- Biomedical Applications of Nanofluids in Drug Delivery -- 1 Introduction -- 2 Nanofluid Preparation -- 2.1 One Step Method -- 2.2 Two-Step Method -- 3 Characterization of Nanofluids -- 4 Advantages of Nanofluid -- 5 Application in the Biomedical Field (Fig. 3) -- 5.1 Cancer Treatment -- 5.2 Antimicrobial Activity -- 5.3 Drug Delivery -- 5.4 Wound Care -- 5.5 Cryopreservation -- 5.6 Cryosurgery -- 5.7 Bioimaging -- 5.8 Micro-Pumping Devices -- 6 Challenges -- 7 Future Scope -- 8 Conclusions -- References -- Metagenomics for Drug Discovery -- 1 Introduction to Drugs.
1.1 What Are Drugs? -- 1.2 Historical Background of Drugs -- 1.3 General Pipeline for Drug Discovery and Development -- 1.4 Need for Newer Drug Discoveries -- 2 Current Approaches for Microbial-Derived Drug Discovery -- 2.1 Unique Habitats and Novel Metabolites -- 2.2 Conventional and Emerging Cultivation Techniques -- 3 Role of Metagenomics in Drug Discovery -- 3.1 Metagenomics Approach for Bioprospecting -- 3.2 Techniques Involved in Metagenomics -- 3.3 Metagenomics for Bioprospecting Drug Synthesizing Potential of Microbes -- 4 Conclusion -- References -- Potential of Heterocyclic Compounds as EGFR-TK Inhibitors in Cancer Therapy -- 1 Introduction -- 2 EGFR-TK Inhibitors as a Target for Tumors -- 2.1 Structural and Physiological Functions of EGFR -- 2.2 Extracellular Domains -- 2.3 Tyrosine-Kinase Domains -- 2.4 Activation and Role of EGFR -- 2.5 Different Strategies for Inhibition of EGFR-TK -- 3 Role of Heterocyclic Compounds as EGFR Inhibitor -- 4 Multi-targets TK Inhibitors -- 5 Quinoline -- 5.1 Natural Sources of Quinoline -- 5.2 FDA Approved Quinoline Drugs -- 5.3 Quinoline as EGFR Inhibitor -- 6 Pyrazole as EGFR Inhibitor -- 7 Pyrimidine as EGFR Inhibitors -- 7.1 Pyrimidine Derivatives -- 7.2 Amino-Pyrimidine Derivatives -- 7.3 D2,4-Diamino Substituted Pyrimidine Derivatives -- 7.4 D4,6-Diamino Substituted Pyrimidine Derivatives -- 8 Pyrrolo-Pyrimidine Derivatives -- 8.1 Pyrazolo-Pyrimidine Containing Compounds -- 8.2 Pyrido-Pyrimidine Based Compounds -- 8.3 Pyrimido-Pyrimidine Derivatives -- 8.4 Furo-Pyrimidine Based Compounds -- 8.5 Thieno-Pyrimidine Derivatives -- 8.6 Thiopyrano-Pyrimidine Derivatives -- 9 Miscellaneous Derivatives -- 9.1 Coumarin Based EGFR-TK Inhibitors -- 10 Conclusion -- References -- Drug Delivery Systems: Current Trends, and Advances -- Potential of Nanocrystalline Drug Delivery Systems -- 1 Introduction.
1.1 History -- 1.2 Properties of Nanocrystals -- 1.3 Benefits of Nanocrystals -- 1.4 Drawback of Nanocrystals -- 2 Methods/Technology (Rath et al. 2008 -- Ohara et al. 2008 -- Kwon et al. 2006 -- Felgner et al. 2004 -- Ren et al. 2011 -- Anuradha et al. 2001 -- Zeng and Li 1999 -- Sahoo et al. 2007) -- 2.1 Bottom-Up Technique -- 2.2 Top Down: (Milling and Homogenization) (Ohara et al. 2008 -- Kwon et al. 2006 -- Felgner et al. 2004 -- Ren et al. 2011 -- Anuradha et al. 2001 -- Zeng and Li 1999 -- Sahoo et al. 2007) -- 2.3 Spray Drying -- 3 Supplementary Technologies (Sahoo et al. 2007 -- Fang et al. 2008 -- Buscaglia et al. 2005 -- Hennings et al. 2001 -- Roy and Mohanta 2009 -- Abdelwahed et al. 2006 -- Ali et al. 2011) -- 3.1 'Rapid Expansion From a Liquefied-Gas Solution (RESS)' -- 3.2 'Nanopure® XP Technology' -- 3.3 'Spray Freezing into Fluid (Liquid) (SFL)' -- 3.4 "Solvent Evaporation" -- 3.5 Sonocrystallization -- 3.6 'Melt Emulsification Technique' -- 4 Characterization of Nano Crystals (Cerdeira et al. 2010 -- Chan and Kwok 2011 -- Deschamps et al. 2009 -- Dong et al. 2010 -- Eerdenbrugh et al. 2008 -- Faure et al. 2001) -- 5 Comparison of the Benefits of Other Drug Delivery Systems and Nanocrystalline Drugs Delivery Systems (Ganta et al. 2009 -- Gao et al. 2008a, b) -- 6 Examples (Marketed Formulation of Nanocrystals) (Ghosh et al. 2012 -- Hanafy et al. 2007) -- 7 Conclusions -- References -- Novel Techniques in Pulmonary Drug Delivery Systems -- 1 Introduction to Pulmonary Drug Delivery Systems (PDDS) -- 2 Respiratory Tract as a Target for PDDS -- 2.1 Respiration Physiology -- 2.2 Classification of Anti Asthmatic and COPD Drugs -- 3 Patient Related Factors -- 3.1 Respiratory Tract's Anatomy and Physiology -- 3.2 Inhalation Flow Rate -- 3.3 Inhalation Mode -- 4 Physical Properties -- 4.1 Properties of Pure Drug.
4.2 Properties of Excipient Carrier System -- 4.3 Formulation Related Factors -- 5 Lung Diseases and Its Treatment by Various Dosage Forms Such as DPI's, MDI's and Nebulizers -- 5.1 Asthma -- 5.2 Types of Asthma -- 5.3 Pathophysiology of Asthma -- 5.4 Diagnosis -- 5.5 Chronic Obstructive Pulmonary Disease -- 5.6 Types of COPD -- 5.7 Treatment of COPD -- 6 Treatment of Asthma and Other Lung Diseases with DPI's, MDI's and Nebulizers -- 7 Analytical Testing of DPI's, MDI's and Nebulizers -- 8 Conclusion -- References -- Proteomics: Scope and Potential -- Proteomics in Oncology: Retrospect and Prospects -- 1 Introduction -- 1.1 Genomic Approaches -- 1.2 Transcriptomic Approaches -- 1.3 Various Areas of Proteomics -- 1.4 Protein Discovery -- 1.5 The Comparison and Profiling Method for Proteomes -- 2 Proteomics Type -- 3 Proteomics of Expression -- 4 Structural Proteomics -- 5 Multiplexed Proteomic Tools: Proteomic Pattern Diagnostic -- 6 Methods for Quantitating and Identifying Proteins -- 7 Isobaric Labelling for Multiplexed Proteomics -- 8 Principles for Quantitative Multiplexed Proteomics -- 9 Innovative Proteomics Technologies -- 9.1 Targeted Multiplexed Proteomics -- 9.2 Multiplexed Proteomics Implementation with Data Independent Acquisition -- 9.3 Proteomics Pattern Diagnostics -- 10 Methods of Proteomics -- 10.1 Two-Dimensional Gel Electrophoresis (2DGE) and Mass Spectrometry -- 10.2 Matrix-Assisted Laser Desorption/Ionization (MALDI) -- 10.3 Electrospray Ionization (ESI) -- 10.4 Aptamer-Based Assays -- 11 Bioinformatics in Proteomics -- 12 Application of Proteomics in Cancer -- 12.1 Cancer Growth -- 12.2 Metastasis -- 13 Drug Resistance -- 14 Clinical Proteomic Tools for Patient Tailored Therapeutics -- References -- Proteomics Novel Prospects in Target Therapy for Infectious Diseases -- 1 Introduction -- 2 Drawbacks of Current Strategies.
3 Proteomics.
Record Nr. UNINA-9910746297103321
Singapore : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui