Additively Manufactured Electrochemical Sensors : Design, Performance and Applications
| Additively Manufactured Electrochemical Sensors : Design, Performance and Applications |
| Autore | Manjunatha Jamballi G |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (450 pages) |
| Disciplina | 681/.2 |
| Altri autori (Persone) | HussainChaudhery Mustansar |
| Soggetto topico | Detectors - Design and construction |
| ISBN |
1-394-30343-2
1-394-30338-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Evaluation of 3D-Printed Technology and Essential of Electrochemical Sensing -- 1.1 Introduction -- 1.2 Types of 3D Printing Techniques for Electrochemical Sensors -- 1.2.1 Stereolithography -- 1.2.2 Fused Deposition Modeling -- 1.2.3 Selective Laser Sintering -- 1.2.4 Inkjet 3D Printing -- 1.3 Materials for 3D Printing Electrochemical Sensors -- 1.3.1 Conductive Polymers -- 1.3.2 Nanomaterials -- 1.4 Case Studies -- 1.4.1 Real-World Examples of 3D Printed Electrochemical Sensors -- 1.4.2 Applications in Healthcare -- 1.4.3 Environmental Monitoring, Industrial Uses -- 1.5 Future Challenges in 3D Printed Electrode -- 1.6 Conclusions -- References -- Chapter 2 Materials, Design Principles, and Need for 3D-Printed Electrochemical Sensors for Monitoring Toxicity -- 2.1 Introduction -- 2.1.1 Electrochemical Sensors -- 2.1.2 Principle of Electrochemical Sensors -- 2.1.3 Electrochemical Sensors for Environmental Monitoring -- 2.2 3D-Printed Electrochemical Sensor -- 2.2.1 Strategies for Fabrication of 3D-Printed Electrodes -- 2.2.2 Hazardous Materials Detectable by Electrochemical Sensors -- 2.3 3D-Printed Fabrication for Making Electrochemical Sensors -- 2.3.1 3D Printing Fabrication Techniques -- 2.3.1.1 Fused Deposition Modeling -- 2.3.1.2 Digital Light Processing -- 2.3.1.3 Direct Ink Writing -- 2.3.1.4 Inkjet Printing -- 2.3.1.5 Other Printing Methods -- 2.3.2 Application of 3D Printing Technology in Environmental Monitoring -- 2.3.2.1 Detection of Per and Polyfluorinated Alkyl Compounds -- 2.3.2.2 Pesticides Detection -- 2.3.2.3 Detection of Chlorophenols and Nitrophenols -- 2.3.2.4 Other Pollutants -- 2.4 Conclusions -- References -- Chapter 3 Nexus of Additive Manufacturing and Sensing for 3D-Printed Electrochemical Sensors -- 3.1 Introduction.
3.2 3D Printed Material Types -- 3.2.1 Materials for Medical Applications of AM -- 3.3 3D Printing Process -- 3.4 Additive Manufacturing Technologies for Polymers -- 3.5 Additive Manufacturing Technologies for Metals -- 3.6 Additive Manufacturing Technologies for Ceramics -- 3.7 Application of AM -- 3.7.1 Plasma-Enhanced Chemical Vapor Deposition (PECVD) Technology -- 3.7.2 The 3D Printing of Nanocomposites for Wearable Biosensors -- 3.7.3 Medical Applications of AM -- References -- Chapter 4 Designing for Optimal Sensing and Microfluidics in Sensor Design for 3D Printed Electrochemical Sensors -- 4.1 Introduction -- 4.2 Methods for Fabrication of 3D Printed Electrode -- 4.3 Three-Dimensional Printing Technologies -- 4.3.1 Fused Deposition Modeling (FDM) -- 4.3.2 Selective Laser Melting (SLM) -- 4.3.3 Stereolithography (SLA) -- 4.3.4 Direct Ink Writing (DIW) -- 4.3.5 Photopolymer Jetting (Polyjet) -- 4.4 Methods of Enhanced Devices for Sensing -- 4.4.1 Single-Step Fabrication -- 4.5 Optimization of Printing Parameters -- 4.5.1 Electrochemical Pretreatment -- 4.5.2 Chemical Pretreatment -- 4.5.3 Biological Pretreatment -- 4.6 Uses of Microfluidic 3D Electrode Sensors -- 4.6.1 Environmental Applications -- 4.6.2 Biological Applications -- 4.7 Conclusion and Prospects for the Future -- References -- Chapter 5 Multi-Material Printing and CAD Tools Usage for 3D-Printed Electrochemical Sensors -- 5.1 Introduction -- 5.2 Materials for Multi-Material Printing -- 5.3 Conductive Materials -- 5.4 Insulating Materials -- 5.5 Sensitive Materials -- 5.6 Printing Techniques -- 5.6.1 Fused Deposition Modeling (FDM) -- 5.7 Stereolithography (SLA) -- 5.8 Direct Ink Writing (DIW) -- 5.9 Inkjet Printing -- 5.10 Design Process Using CAD Tools -- 5.11 Simulation and Optimization -- 5.12 Prototyping and Testing -- 5.13 Applications of 3D-Printed Sensors. 5.14 Challenges and Future Directions -- 5.15 Conclusion -- References -- Chapter 6 Optimization Techniques for 3D-Printed Electrochemical Sensors -- 6.1 Introduction -- 6.2 Design of Optimization -- 6.3 Selection of Materials for 3D-Printed Electrochemical Sensors -- 6.4 Printing Techniques and Parameters -- 6.4.1 Parameters Involved in Techniques for 3D-Printed Electrochemical Sensors -- 6.4.2 3D Printing Technologies -- 6.5 Applications and Future Scope -- 6.6 Conclusion -- References -- Chapter 7 Performance and Validation for 3D-Printed Electrochemical Sensors -- 7.1 Introduction: Overview of Electrochemical Sensors -- 7.2 Fundamentals of 3D Printing for Electrochemical Sensors -- 7.2.1 Basic Principles of 3D Printing Technologies -- 7.2.2 Materials Used in 3D Printing Electrochemical Sensors -- 7.2.3 Design Considerations for 3D-Printed Sensors -- 7.2.4 Fabrication Techniques -- 7.2.4.1 Fused Deposition Modeling -- 7.2.4.2 Stereolithography -- 7.2.4.3 Digital Light Processing -- 7.2.4.4 Selective Laser Sintering -- 7.2.5 Other 3D Printing Techniques -- 7.2.5.1 Inkjet Printing -- 7.2.5.2 Aerosol Jet Printing -- 7.2.5.3 Binder Jetting -- 7.2.6 Characterization of 3D-Printed Electrochemical Sensors -- 7.2.7 Analysis of Surface Morphology -- 7.2.8 Measurements of Electrical Conductivity -- 7.2.9 Electrochemical Performance Evaluation -- 7.2.9.1 Cyclic Voltammetry -- 7.2.9.2 Chronoamperometry -- 7.2.9.3 Electrochemical Impedance Spectroscopy -- 7.2.9.4 Limits of Detection and Sensitivity -- 7.3 Functionalization of 3D-Printed Sensors -- 7.3.1 Surface Modification Techniques -- 7.3.2 Integration with Biological and Chemical Receptors -- 7.3.3 Enhancing Sensor Selectivity and Specificity -- 7.3.4 Validation and Calibration of Sensors -- 7.3.4.1 Calibration Methods -- 7.3.4.2 Reproducibility and Repeatability Studies. 7.3.4.3 Standard Protocols for Sensor Validation -- 7.3.5 Applications of 3D-Printed Electrochemical Sensors -- 7.3.5.1 Environmental Monitoring -- 7.3.5.2 Biomedical Diagnostics -- 7.3.5.3 Food and Beverage Analysis -- 7.3.5.4 Industrial Process Control -- 7.4 Challenges and Future Directions -- 7.5 Conclusion -- Acknowledgement -- References -- Chapter 8 Applications of 3D-Printed Electrochemical Sensors in Medical Diagnostics -- Abbreviations -- 8.1 Introduction -- 8.1.1 3D Printing Techniques -- 8.1.1.1 Vat Photopolymerization -- 8.1.1.2 Material Extrusion -- 8.1.1.3 Inkjet Printing -- 8.1.1.4 Bioprinting -- 8.1.2 Electrochemical Methods -- 8.1.2.1 Cyclic Voltammetry -- 8.1.2.2 Differential Pulse Voltammetry -- 8.1.2.3 Square Wave Voltammetry -- 8.1.2.4 Electrochemical Impedance Spectroscopy -- 8.1.2.5 Chronoamperometry -- 8.2 Applications of 3D-Printed Electrochemical Sensors in Medical Diagnostics -- 8.2.1 3D-Printed Electrochemical Sensors Integrated in Point-of-Care Diagnostics -- 8.2.2 Integration of 3D-Printed Electrochemical Sensors in Wearable and Implantable Devices -- 8.2.3 Integration of 3D-Printed Electrochemical Sensors in Lab-on-a-Chip Platforms -- 8.2.4 Pharmaceutical and Biologically Important Compound Detection Sensors Based on 3D-Printed Electrochemical Sensors -- 8.3 Emerging Trends and Future Applications -- 8.4 Conclusion -- References -- Chapter 9 Application of 3D-Printed Electrochemical Sensors in Environmental Monitoring -- 9.1 Introduction -- 9.1.1 3D Printing Techniques -- 9.1.2 Application of 3D-Printed Electrochemical Sensors in Environmental Monitoring -- 9.2 Conclusion -- References -- Chapter 10 Applications of 3D-Printed Electrochemical Sensors in Food Quality Control -- 10.1 Introduction to 3D-Printed Electrochemical Sensors -- 10.1.1 Basics of Electrochemical Sensors. 10.1.2 Integration of 3D Printing with Electrochemical Sensing -- 10.2 Principles of Electrochemical Sensing in Food Quality Control -- 10.2.1 Electrochemical Detection Methods -- 10.2.1.1 Voltammetry -- 10.2.1.2 Amperometry -- 10.2.1.3 Potentiometry -- 10.2.1.4 Conductometry -- 10.2.1.5 Electrochemical Impedance Spectroscopy -- 10.2.2 Target Analytes in Food Quality -- 10.2.2.1 Pesticides -- 10.2.2.2 Pathogens -- 10.2.2.3 Heavy Metals -- 10.2.2.4 Mycotoxin -- 10.2.2.5 Food Spoilage -- 10.3 Mechanisms of Detection and Measurement -- 10.4 Applications in Food Quality Control -- 10.4.1 Detection of Contaminants -- 10.4.2 Monitoring Freshness and Spoilage -- 10.4.3 Analysis of Nutritional Content -- 10.5 Case Studies -- 10.5.1 Detection of Pesticide Residue Contamination -- 10.5.2 Bacterial Detection in Food -- 10.5.3 Antioxidant Sensing and Monitoring -- 10.6 Advantages and Limitations of 3D-Printed Electrochemical Sensors -- 10.7 Future Trends and Innovations -- 10.7.1 Current Trends -- 10.7.2 Future Innovations -- 10.8 Summary -- References -- Chapter 11 Applications of 3D-Printed Electrochemical Sensors in Energy and Industrial Processes -- 11.1 Introduction -- 11.2 Types of 3D Printing Techniques -- 11.2.1 Stereolithography -- 11.2.1.1 The Stereolithography Gives a Summary of the Advantages and Limitations -- 11.2.1.2 Examples of Electrochemical Sensors Fabricated Using SLA -- 11.2.2 Fused Deposition Modeling -- 11.2.2.1 Operation of the FDM Equipment -- 11.2.3 Selective Laser Sintering -- 11.2.4 Inkjet 3D Printing -- 11.3 Materials for 3D Printing Electrochemical Sensors -- 11.3.1 Conductive Polymers -- 11.3.1.1 Applications of Conducting Polymers -- 11.3.1.2 3D Printing of Conducting Polymers -- 11.3.2 Nanomaterials -- 11.4 Applications in Electrochemical Energy Storage -- 11.5 Applications in Environmental Analysis. 11.5.1 Detection of a Small Organic Materials. |
| Record Nr. | UNINA-9911022470903321 |
Manjunatha Jamballi G
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Electrochemical Sensors Based on Carbon Composite Materials : Fabrication, Properties and Applications
| Electrochemical Sensors Based on Carbon Composite Materials : Fabrication, Properties and Applications |
| Autore | Manjunatha Jamballi G |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2022 |
| Descrizione fisica | 1 online resource (439 pages) |
| Collana | IOP Series in Sensors and Sensor Systems Series |
| ISBN | 0-7503-5128-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Acknowledgement -- Editor biography -- Dr Jamballi G Manjunatha -- List of contributors -- Chapter 1 An overview of voltammetric techniques to the present era -- 1.1 Introduction -- 1.1.1 Voltammetry -- 1.1.2 General theory -- 1.1.3 Voltammetric techniques and applications -- 1.2 Voltammetric techniques -- 1.2.1 Sweep voltammetric techniques -- 1.2.2 Polarography-like methods -- 1.2.3 Additional methods -- 1.3 Summary -- References -- Chapter 2 Development of electrochemical sensors for toxic metal detection -- 2.1 Introduction -- 2.2 Carbon-based electrode materials for the electrochemical sensing of toxic metals -- 2.2.1 Graphite electrodes -- 2.2.2 Carbon paste electrodes -- 2.2.3 Glassy carbon electrodes -- 2.2.4 Screen printed carbon electrodes -- 2.3 Carbon composite materials for the electrochemical sensing of toxic metals -- 2.3.1 Graphene and its derivatives -- 2.3.2 Carbon nanotubes -- 2.3.3 Carbon nanofibers -- 2.4 Conclusion -- References -- Chapter 3 Voltammetric sensors for environmental monitoring -- 3.1 Introduction -- 3.2 Monitoring the environment contaminants by voltammetric sensors constructed by carbon-based nanocomposites -- 3.2.1 Voltammetric sensors constructed by graphene-anchored composites -- 3.2.2 Voltammetric sensors constructed by carbon nanotubes composites -- 3.2.3 Voltammetric sensors constructed by g-C3N4 composites -- 3.2.4 Voltammetric sensors constructed by C6 composites -- 3.2.5 Voltammetric sensors constructed by hollow sphere and porous carbon composites -- 3.3 Conclusion and perspectives -- References -- Chapter 4 Graphene-based sensing devices for soil moisture analysis -- 4.1 Introduction -- 4.2 Classification of nanoparticles -- 4.3 Synthesis techniques of nanoparticles -- 4.4 Carbon nanoparticles and their derivatives -- 4.5 Synthesis of graphene using Hummers' method.
4.6 Properties and characterization techniques of graphene -- 4.7 Soil moisture sensors types -- 4.8 Deliberate qualities of soil moisture sensor and review of graphene-based soil moisture sensors -- 4.9 Soil moisture mechanism for graphene-based soil moisture sensors -- 4.10 Conclusion -- Acknowledgements -- References -- Chapter 5 Carbon composite material as a sensor for pharmaceutical sample analysis -- 5.1 Introduction -- 5.2 Fabrication of carbon composite sensor for electrochemical drug analysis -- 5.2.1 Electrochemical deposition -- 5.2.2 Drop-casting preparation -- 5.2.3 Dip-coating preparation -- 5.3 Application of carbon composite material as a sensor for pharmaceutical sample analysis -- 5.3.1 Selected applications of carbon composite with GCE -- 5.3.2 Selected applications of carbon composite with CPE -- 5.3.3 Selected applications of carbon composite with SPCE -- 5.3.4 Selected applications of carbon composite with graphite and PGE -- 5.3.5 Selected applications carbon composite-based on other electrodes -- 5.4 Conclusion -- Acknowledgments -- References -- Chapter 6 Recent innovations in voltammetric techniques -- 6.1 Introduction -- 6.2 Linear sweep voltammetry -- 6.3 Cyclic voltammetry -- 6.4 Differential pulse voltammetry -- 6.5 Square wave voltammetry -- 6.6 Stripping voltammetry -- 6.7 Concluding remarks -- Acknowledgements -- References -- Chapter 7 Carbon-based electrodes for forensic sample analysis -- 7.1 Introduction -- 7.2 Electrode material -- 7.2.1 Carbon and graphite -- 7.2.2 Graphite structure -- 7.3 Sorption based artificially changed terminals -- 7.3.1 Physisorption technique -- 7.3.2 Chemisorption technique -- 7.4 Conclusion -- References -- Chapter 8 Carbon composite voltammetric sensors for food quality assessment -- 8.1 Introduction -- 8.2 Types of carbon nanomaterials -- 8.2.1 Carbon nanotubes. 8.2.2 Graphene and related compounds -- 8.2.3 Carbon dots -- 8.2.4 Ordered mesoporous carbon -- 8.2.5 Boron-Doped Diamond -- 8.3 Conclusions -- Conflicts of interest -- References -- Chapter 9 Recent advances in electrochemical monitoring of epinephrine using carbon-based (bio)sensor devices for clinical applications -- 9.1 Introduction -- 9.2 Epinephrine: a brief history -- 9.3 Epinephrine as a biomarker and its clinical uses -- 9.4 Analytical methods employed in the quantification of epinephrine -- 9.5 Voltammetric techniques -- 9.5.1 Working electrodes based on carbon materials -- 9.5.2 Electrochemical biosensors based in polyphenol oxidases -- 9.6 Recent voltammetric platforms developed for epinephrine determination -- 9.7 Electrochemical mechanism of epinephrine oxidation -- 9.8 Recent progress in microelectrodes for in vivo electrochemical sensing of epinephrine -- 9.9 Conclusion and future perspectives -- Acknowledgments -- References -- Chapter 10 Electrochemical detection of amoxicillin as an antibiotic drug by using surface modified carbon based sensors -- 10.1 Introduction -- 10.2 Experimental section -- 10.2.1 Reagents and solutions -- 10.2.2 Instrumentation -- 10.2.3 Fabrication of working sensor -- 10.3 Results and interpretations -- 10.3.1 Electropolymerization of the AP at the surface of the bare electrode -- 10.3.2 Morphological studies of the prepared electrodes -- 10.3.3 Electrochemical characterization of the modified and unmodified electrode -- 10.3.4 Impedance study -- 10.3.5 Voltammetric sensing of AMX at the bare and modified electrode -- 10.3.6 Influence of supporting electrolyte pH -- 10.3.7 Effect of the potential sweep rate -- 10.3.8 Analytical curve and detection limit -- 10.3.9 Stability, reproducibility, repeatability -- 10.3.10 Selectivity of the modified electrode. 10.3.11 Interference study with some metal ions and the organic compounds -- 10.3.12 Analytical applications -- 10.4 Conclusion -- Acknowledgement -- References -- Chapter 11 Chemically modified carbon electrodes for metal ions and organic molecule sensing applications -- 11.1 Introduction -- 11.2 Different types of electrodes in the modification process -- 11.2.1 Metal electrodes -- 11.2.2 Electrodes from glassy carbon -- 11.2.3 Electrodes from carbon paste -- 11.2.4 Pyrolytic graphite electrodes -- 11.3 Modification of electrodes with chemical techniques -- 11.3.1 Chemical modification -- 11.3.2 Electrochemical modification -- References -- Chapter 12 Electrochemical sensors based on carbon nanomaterial using Langmuir-Blodgett and layer-by-layer thin films for chemical and biological analyses -- 12.1 Introduction -- 12.2 Electrochemical sensing based on carbon nanomaterials: electrode coating by Langmuir-Blodgett and layer-by-layer techniques -- 12.2.1 Electrochemical sensor modified by layer-by-layer technique -- 12.2.2 Electrochemical sensor modified by the Langmuir-Blodgett technique -- 12.3 Future perspectives -- References -- Chapter 13 Development of electrochemical sensors for the analysis of herbicides -- 13.1 Introduction -- 13.1.1 Electrochemical methods in herbicide detection -- 13.2 Conclusion -- Some ambiguous contractions -- References -- Chapter 14 Application of electrochemical sensor for insulin detection -- 14.1 Introduction -- 14.2 Carbon-based electrochemical determination of insulin -- 14.2.1 Carbon-based electrodes -- 14.2.2 Carbon-based electrode modifiers -- 14.3 Commonly employed electrochemical sensing methodologies -- 14.3.1 Non-biorecognition element based electrochemical sensors -- 14.3.2 Biorecognition element based electrochemical sensors -- 14.3.3 Carbon-based MIP sensors for insulin. 14.4 Conclusion and future aspects -- References -- Chapter 15 Carbon nanomaterial-based electrochemical sensors for biomedical applications -- 15.1 Introduction -- 15.2 Biosensors based on graphenes -- 15.2.1 Glucose sensing -- 15.2.2 Cholesterol sensing -- 15.2.3 Hydrogen peroxide sensing -- 15.2.4 Biosensing of neurotransmitters -- 15.3 Carbon nanotubes as electrochemical biosensors -- 15.3.1 Enzymatic biosensing -- 15.3.2 Biosensing of dopamine -- 15.3.3 Non-enzymatic glucose sensing -- 15.3.4 Nucleic acid sensing -- 15.3.5 Detection of cancer biomarkers -- 15.4 Carbon dots as biosensors -- 15.4.1 Cancer diagnosis -- 15.4.2 Diagnosis and monitoring of cardiovascular diseases -- 15.4.3 Detection of pathogens and infectious diseases -- 15.4.4 Non-enzymatic biosensing of hydrogen peroxide and glucose -- 15.4.5 Electrochemical detection of dopamine -- 15.4.6 Detection of other organic molecules -- 15.5 Conclusion -- References -- Chapter 16 Fabrication of disposable sensors to test for environmental pollutants -- 16.1 Introduction -- 16.2 Basic characteristics of a biosensor -- 16.3 Electrochemical biosensors and working principle -- 16.4 Electrodes in electrochemical biosensors and fabrication of screen-printed electrodes -- 16.5 Integration of mediators, pre-anodized screen-printed carbon electrodes -- 16.6 Pre-anodized screen-printed carbon electrodes -- 16.7 Applications -- 16.8 Disposable electrodes in the detection of biomolecules -- 16.9 Screen-printed electrodes in the detection of food contaminants -- 16.10 Importance of disposable electrodes in pesticide detection -- 16.11 Environmental sample analysis (determination of pH and dissolved oxygen level in water, estimation of ions in water samples, organic compounds, heavy metal detection) -- 16.12 Determination of pH and dissolved oxygen levels in water. 16.13 Estimation of ions in water samples. |
| Record Nr. | UNINA-9910861039103321 |
Manjunatha Jamballi G
|
||
| Bristol : , : Institute of Physics Publishing, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Graphene-Based Sensors
| Graphene-Based Sensors |
| Autore | Manjunatha Jamballi G |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2023 |
| Descrizione fisica | 1 online resource (345 pages) |
| Collana | IOP Series in Sensors and Sensor Systems Series |
| Soggetto topico |
Graphene
Biosensors |
| ISBN |
9780750355803
0750355808 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- < -- named-book-part-body& -- #62 -- < -- p& -- #62 -- Since the last decade, graphene based materials have attained significant importance in electrochemical and material science. Different forms of graphene like graphene oxide, reduced graphene oxide, graphene quantum dots, pristine graphene, functionalized graphene, graphene nanoplatelets, etc, are used in construction of electrochemical devices. The extensive usage of these materials in electrochemical sensing of significant molecules or ions is due to their exce -- Acknowledgements -- Editor biography -- Jamballi G Manjunatha -- List of contributors -- Chapter An overview of graphene properties, types, and role in chemistry -- 1.1 Properties -- 1.1.1 Rheological properties -- 1.1.2 Thermal conductivity -- 1.2 Routes of synthesis -- 1.2.1 Top-down and bottom-up -- 1.3 Applications -- 1.3.1 Final considerations -- References -- Chapter Recent advances in graphene-based electrochemical sensing devices -- 2.1 Introduction -- 2.1.1 Objective of the chapter -- 2.2 Graphene in electrochemical sensing devices -- 2.2.1 Cancer biomarkers -- 2.2.2 Heavy metal electrochemical sensors -- 2.2.3 Cholesterol and glucose electrochemical (bio)sensors -- 2.2.4 Bisphenol A electrochemical detection -- 2.2.5 Dopamine, ascorbic acid, and uric acid -- 2.2.6 NADH-based electrochemical detection -- 2.2.7 Graphene-based gas sensing devices -- 2.2.8 Electrochemical detection of psychoactive drugs -- 2.2.9 Flexible electrochemical sensors -- 2.3 Conclusion -- Conflict of interest -- References -- Chapter Graphene-based sensors for electrochemical detection of textile dye -- 3.1 Introduction -- 3.2 Voltammetry -- 3.3 Determination of textile dyes in environmental matrices employing graphene-based sensors -- 3.4 Conclusion -- Acknowledgments -- References.
Chapter Graphene electrochemical sensors for nucleotides -- 4.1 Introduction -- 4.2 Graphene-based electrochemical sensors -- 4.3 Graphene-based nanomaterials as a biosensor -- 4.4 Graphene-based nanomaterials and deoxyribonucleic acid (DNA) -- 4.5 DNA hybridization on graphene electrode -- 4.6 Conclusion -- References -- Chapter Graphene-modified electrochemical sensors for estimation of food contaminants -- 5.1 Introduction -- 5.2 Graphene and its derivatives-based electrochemical sensors for organic food pollutants -- 5.2.1 Food colourants and preservatives -- 5.2.2 Pesticides -- 5.2.3 Drugs -- 5.2.4 Other compounds -- 5.3 Electrochemical sensors based on graphene and its derivatives for inorganic food contaminants -- 5.3.1 Metal ions -- 5.3.2 Inorganic anions -- 5.4 Conclusions and current challenges -- References -- Chapter Electro-analysis of hormones in a graphene-modified electrochemical sensor -- 6.1 Introduction -- 6.2 Experimentation -- 6.2.1 Materials and characterization -- 6.2.2 Preparation of solutions -- 6.2.3 Synthesis of rGO-CuNPs -- 6.2.4 Preparation of the electrodes -- 6.3 Result and discussion -- 6.3.1 Morphology and electrochemical characterization of estriol -- 6.3.2 Electrochemical behaviour of rGO-CuNPs -- 6.3.3 Optimization parameters and analytical characteristics -- 6.4 Conclusion -- Authors contributions -- Conflict of interest -- Data availability -- Funding -- Acknowledgements -- References -- Chapter Graphene composite electrodes for electrochemical determination of drugs -- 7.1 Graphene -- 7.1.1 Properties of graphene -- 7.1.2 Potential applications of graphene -- 7.2 Electrochemical sensors -- 7.3 Recent graphene composite electrodes for electrochemical determination of drugs -- 7.4 Conclusion -- Acknowledgments -- References -- Chapter Graphene-based sensing platform for analysis of food flavours and additives. 8.1 Introduction -- 8.2 Chemistry behind graphene -- 8.3 Quantum stability -- 8.4 Production of graphene -- 8.5 Mechanical exfoliation -- 8.6 Chemical exfoliation -- 8.7 Chemical method by reduction of graphene oxide -- 8.8 Chemical vapour deposition -- 8.9 Growth on copper and nickel -- 8.10 Graphene at a glance -- 8.11 Heavy metal detection -- 8.12 Pesticides detection -- 8.13 Food additives -- 8.14 Detection of foodborne microorganisms -- 8.15 Other compounds -- 8.16 Conclusion -- References -- Chapter Graphene-based electrodes for determination of neurotransmitters -- 9.1 Introduction -- 9.2 Graphene-based electrochemical sensors for neurotransmitters -- 9.2.1 Graphene, graphene oxide and reduced graphene oxide as electrocatalyst -- 9.2.2 Graphene nanocomposites as electrocatalyst -- 9.2.3 Graphene quantum dots as electrocatalyst -- 9.3 Conclusion -- References -- Chapter Graphene-modified electrodes for detection of vitamins -- 10.1 Introduction -- 10.2 Conclusions -- Abbreviations -- References -- Chapter Graphene-based electrochemical platform for well-known phenolic compounds from natural sources -- 11.1 Introduction -- 11.2 Classification of some popular phenolic compounds in natural resources -- 11.2.1 Quinones and quinone derivatives -- 11.2.2 Flavone and related flavonoid glycosides -- 11.3 Nanomaterials for improved electrochemical sensing -- 11.3.1 Carbon nanomaterials -- 11.3.2 Carbon nanomaterials for electrochemical sensing: properties and potential -- 11.4 Graphene-based nanomaterials for determination of some phenolic compounds -- 11.5 Conclusion -- References -- Chapter Graphene-based electrochemical sensors for soil analysis -- 12.1 Introduction -- 12.2 Heavy metals -- 12.3 Heavy metals in soil -- 12.4 Sources of heavy metals in soil -- 12.5 Electrochemical studies -- 12.6 Graphene. 12.7 Cyclic voltammetry behavior of soil sample at pH 7.0 on Gra/GCE -- 12.7.1 Differential pulse stripping voltammetric (DPSV) analysis using Gra/GCE -- 12.7.2 Electrochemical detection of pesticides -- 12.7.3 Electrochemical detection of nitrates and nitrites -- 12.8 Conclusion -- References -- Chapter Recent advancements in the detection of amino acids using graphene-oxide-based electrochemical sensors -- 13.1 Introduction -- 13.2 GO-based electrochemical sensors for detection of essential amino acids -- 13.2.1 GO-based electrochemical sensors for detection of histidine -- 13.2.2 GO-based electrochemical sensors for the detection of leucine -- 13.2.3 GO-based electrochemical sensors for detection of isoleucine -- 13.2.4 GO-based electrochemical sensors for detection of lysine -- 13.2.5 GO-based electrochemical sensors for detection of methionine -- 13.2.6 GO-based electrochemical sensors for detection of phenylalanine -- 13.2.7 GO-based electrochemical sensors for detection of threonine -- 13.2.8 GO-based electrochemical sensors for detection of tryptophan -- 13.2.9 GO-based electrochemical sensors for detection of valine -- 13.3 GO-based electrochemical sensors for detection of non-essential amino acids -- 13.3.1 GO-based electrochemical sensors for the detection of alanine -- 13.3.2 GO-based electrochemical sensors for detection of aspartic acid -- 13.3.3 GO-based electrochemical sensors for detection of asparagine -- 13.3.4 GO-based electrochemical sensors for detection of glutamic acid -- 13.3.5 GO-based electrochemical sensors for detection of serine -- 13.4 GO-based electrochemical sensors for detection of conditionally non-essential amino acids -- 13.4.1 GO-based electrochemical sensors for detection of arginine -- 13.4.2 GO-based electrochemical sensors for detection of cysteine. 13.4.3 GO-based electrochemical sensors for detection of glutamine -- 13.4.4 GO-based electrochemical sensors for detection of glycine -- 13.4.5 GO-based electrochemical sensors for detection of proline -- 13.4.6 GO-based electrochemical sensors for detection of tyrosine -- 13.5 Conclusion -- References -- Chapter Application of graphene-based electrodes for water pollutants -- 14.1 Introduction -- 14.2 Electrode evolution: advancing the field of sensing electrode -- 14.3 Graphene-based sensing mechanism and performance metrics -- 14.3.1 Sensing mechanism in sensors based on graphene -- 14.3.2 Sensing methods -- 14.3.3 Performance evaluation metrics -- 14.3.4 Advantages of graphene-based sensors -- 14.4 Case studies: graphene based water pollutant sensors -- 14.4.1 Detection of heavy metals -- 14.4.2 Organic pollutant detection -- 14.4.3 Microbial detection -- 14.4.4 Water quality monitoring -- 14.5 Recent advancements in graphene-based sensors -- 14.5.1 Hybrid structures and composites -- 14.5.2 Functionalization and surface modification -- 14.5.3 Integration with microfluidics and the Internet of Things (IoT) -- 14.5.4 3D printing of graphene electrodes -- 14.6 Challenges and future perspectives -- 14.6.1 Scalability and commercialization -- 14.6.2 Environmental stability and durability -- 14.6.3 Selectivity and sensitivity enhancement -- 14.6.4 Multimodal sensing approaches -- 14.6.5 Integration with water treatment systems -- 14.7 Conclusion -- References -- Chapter Biomedical applications of graphene-based electrochemical sensing devices -- 15.1 Introduction -- 15.2 Characteristics and types of graphene and its derivatives -- 15.2.1 Graphene -- 15.2.2 Graphene oxide -- 15.2.3 Reduced graphene oxide -- 15.2.4 Graphene quantum dots -- 15.2.5 Carbon nanotubes -- 15.2.6 Recent advancement in the catalytic activity of graphene. 15.3 Properties of graphene. |
| Record Nr. | UNINA-9910915776903321 |
Manjunatha Jamballi G
|
||
| Bristol : , : Institute of Physics Publishing, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||