top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Sensing Technologies for Real Time Monitoring of Water Quality
Sensing Technologies for Real Time Monitoring of Water Quality
Autore Manjakkal Libu
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (384 pages)
Disciplina 628.161
Altri autori (Persone) LorenzelliLeandro
WillanderMagnus
Collana IEEE Press Series on Sensors Series
ISBN 1-119-77584-1
1-119-77582-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Editors -- List of Contributors -- Preface -- Section I Materials and Sensors Development Including Case Study -- Chapter 1 Smart Sensors for Monitoring pH, Dissolved Oxygen, Electrical Conductivity, and Temperature in Water -- 1.1 Introduction -- 1.2 Water Quality Parameters and Their Importance -- 1.2.1 Impact of pH on Water Quality -- 1.2.2 Impact of Dissolved Oxygen on Water Quality -- 1.2.3 Impact of Electrical Conductivity on Water Quality -- 1.2.4 Impact of Temperature on Water Quality -- 1.3 Water Quality Sensors -- 1.3.1 pH -- 1.3.2 Dissolved Oxygen -- 1.3.3 Electrical Conductivity -- 1.3.4 Temperature -- 1.4 Smart Sensors -- 1.5 Conclusion -- Acknowledgment -- References -- Chapter 2 Dissolved Heavy Metal Ions Monitoring Sensors for Water Quality Analysis -- 2.1 Introduction -- 2.2 Sources and Effects of Heavy Metals -- 2.3 Detection Techniques -- 2.3.1 Analytical Detection: Conventional Detection Techniques of Heavy Metals -- 2.3.2 Electrochemical Detection Techniques of Heavy Metals -- 2.3.3 Biomolecules Modification for Heavy Metal Detection -- 2.4 Future Direction -- 2.5 Conclusions -- Acknowledgment -- References -- Chapter 3 Ammonia, Nitrate, and Urea Sensors in Aquatic Environments -- 3.1 Introduction -- 3.2 Detection Techniques for Ammonia, Nitrate, and Urea in Water -- 3.2.1 Spectrophotometry -- 3.2.2 Fluorometry -- 3.2.3 Electrochemical Sensors -- 3.3 Ammonia -- 3.3.1 Ammonia in Aquatic Environments -- 3.3.2 Ammonia Detection Techniques -- 3.4 Nitrate -- 3.4.1 Nitrate in Aquatic Environments -- 3.4.2 Nitrate Detection Techniques -- 3.5 Urea -- 3.5.1 Urea in Aquatic Environment -- 3.5.2 Urea Detection Techniques -- 3.6 Conclusion and Future Perspectives -- Acknowledgment -- References -- Chapter 4 Monitoring of Pesticides Presence in Aqueous Environment.
4.1 Introduction: Background on Pesticides -- 4.1.1 Types and Properties -- 4.1.2 Risks -- 4.1.3 Regulation and Legislation -- 4.1.4 Occurrence of Pesticide Exceedance -- 4.2 Current Pesticides Detection Methods -- 4.2.1 Detection of Pesticides Based on Electrochemical Methods -- 4.2.2 Detection of Pesticides Based on Optical Methods -- 4.2.3 Detection of Pesticides Based on Raman Spectroscopy -- 4.3 Conclusion -- Acknowledgments -- References -- Chapter 5 Waterborne Bacteria Detection Based on Electrochemical Transducer -- 5.1 Introduction -- 5.2 Typical Waterborne Pathogens -- 5.3 Traditional Diagnostic Tools -- 5.4 Biosensors for Bacteria Detection in Water -- 5.4.1 Common Bioreceptors for Electrochemical Sensing of Foodborne and Waterborne Pathogenic Bacteria -- 5.4.2 Nanomaterials for Electrochemical Sensing of Waterborne Pathogenic Bacteria -- 5.5 Various Electrochemical Biosensors Available for Pathogenic Bacteria Detection in Water -- 5.5.1 Amperometric Detection -- 5.5.2 Impedimetric Detection -- 5.5.3 Conductometric Detection -- 5.5.4 Potentiometric Detection -- 5.6 Conclusion and Future Prospective -- Acknowledgments -- References -- Chapter 6 Zinc Oxide-Based Miniature Sensor Networks for Continuous Monitoring of Aqueous pH in Smart Agriculture -- 6.1 Introduction -- 6.2 Metal Oxide-Based Sensors and Detection Methods -- 6.3 pH Sensor Fabrication -- 6.3.1 Detection of pH: Materials and Method -- 6.3.2 Detection of pH: Surface Morphology of the Nanostructured ZnO and IDEs -- 6.3.3 Detection of pH: Electrochemical Sensing Performance -- 6.3.4 Detection of Real-Time pH Level in Smart Agriculture: Wireless Sensor Networks and Embedded System -- 6.4 Conclusion -- Acknowledgments -- References -- Section II Readout Electronic and Packaging -- Chapter 7 Integration and Packaging for Water Monitoring Systems -- 7.1 Introduction.
7.2 Advanced Water Quality Monitoring Systems -- 7.2.1 Multi-sensing on a Single Chip -- 7.2.2 Heterogeneous Integration -- 7.2.3 Case Study: MoboSens -- 7.3 Basics of Packaging -- 7.4 Hybrid Flexible Packaging -- 7.4.1 Interconnects -- 7.4.2 Thin Die Embedding -- 7.4.3 Encapsulation and Hermeticity -- 7.4.4 Roll to Roll Assembly -- 7.5 Conclusion -- References -- Chapter 8 A Survey on Transmit and Receive Circuits in Underwater Communication for Sensor Nodes -- 8.1 Introduction -- 8.2 Sensor Networks in an Underwater Environment -- 8.2.1 Acoustic Sensor Network -- 8.2.2 Electromagnetic (EM) Waves Underwater Sensors -- 8.3 Conclusion -- Acknowledgment -- References -- Section III Sensing Data Assessment and Deployment Including Extreme Environment and Advanced Pollutants -- Chapter 9 An Introduction to Microplastics, and Its Sampling Processes and Assessment Techniques -- 9.1 Introduction -- 9.1.1 Properties of Microplastics -- 9.1.2 Microplastics in Food Chain -- 9.1.3 Human Consumption of Microplastics and Possible Health Effects -- 9.1.4 Overview -- 9.2 Microplastic Sampling Tools -- 9.2.1 Non-Discrete Sampling Devices -- 9.2.2 Discrete Sampling Devices -- 9.2.3 Surface Microlayer Sampling Devices -- 9.3 Microplastics Separation -- 9.3.1 Separating Microplastics from Liquid Samples -- 9.3.2 Separating Microplastics from Sediments -- 9.4 Microplastic Sample Digestion Process -- 9.4.1 Acidic Digestion -- 9.4.2 Alkaline Digestion -- 9.4.3 Oxidizing Digestion -- 9.4.4 Enzymatic Degradation -- 9.5 Microplastic Identification and Classification -- 9.5.1 Visual Counting -- 9.5.2 Fluorescence -- 9.5.3 Destructive Analysis -- 9.5.4 Nondestructive Analysis -- 9.6 Conclusions -- Acknowledgments -- References -- Chapter 10 Advancements in Drone Applications for Water Quality Monitoring and the Need for Multispectral and Multi-Sensor Approaches.
10.1 Introduction -- 10.2 Airborne Drones for Environmental Remote Sensing -- 10.3 Drone Multispectral Remote Sensing -- 10.4 Integrating Multiple Complementary Sensor Strategies with a Single Drone -- 10.5 Conclusion -- Acknowledgment -- References -- Chapter 11 Sensors for Water Quality Assessment in Extreme Environmental Conditions -- 11.1 Introduction -- 11.2 Physical Parameters -- 11.2.1 Electrical Conductivity -- 11.2.2 Temperature -- 11.2.3 Pressure -- 11.3 Chemical Parameters -- 11.3.1 pH -- 11.3.2 Dissolved Oxygen and Chemical Oxygen Demand -- 11.3.3 Inorganic Content -- 11.4 Biological Parameters -- 11.5 Sensing in Extreme Water Environments -- 11.6 Discussion and Outlook -- 11.7 Conclusion -- References -- Section IV Sensing Data Analysis and Internet of Things with a Case Study -- Chapter 12 Toward Real-Time Water Quality Monitoring Using Wireless Sensor Networks -- 12.1 Introduction -- 12.2 Water Quality Monitoring Systems -- 12.2.1 Laboratory-Based WQM (LB-WQM) -- 12.2.2 Wireless Sensor Networks-Based WQM (WSNs-WQM) -- 12.3 The Use of Industry 4.0 Technologies for Real-Time WQM -- 12.4 Conclusion -- References -- Chapter 13 An Internet of Things-Enabled System for Monitoring Multiple Water Quality Parameters -- 13.1 Introduction -- 13.2 Water Quality Parameters and Related Sensors -- 13.3 Design and Fabrication of the Proposed Sensor -- 13.3.1 Sensor's Working Principle -- 13.4 Experimental Process -- 13.5 Autonomous System Development -- 13.5.1 Algorithm for Data Classification -- 13.6 Experimental Results -- 13.6.1 Sensor Characterization for Temperature, pH, Nitrate, Phosphate, Calcium, and Magnesium Measurement -- 13.6.2 Repeatability -- 13.6.3 Reproducibility -- 13.6.4 Real Sample Measurement and Validation -- 13.6.5 Data Collection -- 13.6.6 Power Consumption -- 13.7 Conclusion -- Acknowledgment -- References -- Index.
IEEE Press Series on Sensors -- EULA.
Record Nr. UNINA-9910829917303321
Manjakkal Libu  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sensing Technologies for Real Time Monitoring of Water Quality
Sensing Technologies for Real Time Monitoring of Water Quality
Autore Manjakkal Libu
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (384 pages)
Disciplina 628.161
Altri autori (Persone) LorenzelliLeandro
WillanderMagnus
Collana IEEE Press Series on Sensors Series
ISBN 1-119-77584-1
1-119-77582-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Editors -- List of Contributors -- Preface -- Section I Materials and Sensors Development Including Case Study -- Chapter 1 Smart Sensors for Monitoring pH, Dissolved Oxygen, Electrical Conductivity, and Temperature in Water -- 1.1 Introduction -- 1.2 Water Quality Parameters and Their Importance -- 1.2.1 Impact of pH on Water Quality -- 1.2.2 Impact of Dissolved Oxygen on Water Quality -- 1.2.3 Impact of Electrical Conductivity on Water Quality -- 1.2.4 Impact of Temperature on Water Quality -- 1.3 Water Quality Sensors -- 1.3.1 pH -- 1.3.2 Dissolved Oxygen -- 1.3.3 Electrical Conductivity -- 1.3.4 Temperature -- 1.4 Smart Sensors -- 1.5 Conclusion -- Acknowledgment -- References -- Chapter 2 Dissolved Heavy Metal Ions Monitoring Sensors for Water Quality Analysis -- 2.1 Introduction -- 2.2 Sources and Effects of Heavy Metals -- 2.3 Detection Techniques -- 2.3.1 Analytical Detection: Conventional Detection Techniques of Heavy Metals -- 2.3.2 Electrochemical Detection Techniques of Heavy Metals -- 2.3.3 Biomolecules Modification for Heavy Metal Detection -- 2.4 Future Direction -- 2.5 Conclusions -- Acknowledgment -- References -- Chapter 3 Ammonia, Nitrate, and Urea Sensors in Aquatic Environments -- 3.1 Introduction -- 3.2 Detection Techniques for Ammonia, Nitrate, and Urea in Water -- 3.2.1 Spectrophotometry -- 3.2.2 Fluorometry -- 3.2.3 Electrochemical Sensors -- 3.3 Ammonia -- 3.3.1 Ammonia in Aquatic Environments -- 3.3.2 Ammonia Detection Techniques -- 3.4 Nitrate -- 3.4.1 Nitrate in Aquatic Environments -- 3.4.2 Nitrate Detection Techniques -- 3.5 Urea -- 3.5.1 Urea in Aquatic Environment -- 3.5.2 Urea Detection Techniques -- 3.6 Conclusion and Future Perspectives -- Acknowledgment -- References -- Chapter 4 Monitoring of Pesticides Presence in Aqueous Environment.
4.1 Introduction: Background on Pesticides -- 4.1.1 Types and Properties -- 4.1.2 Risks -- 4.1.3 Regulation and Legislation -- 4.1.4 Occurrence of Pesticide Exceedance -- 4.2 Current Pesticides Detection Methods -- 4.2.1 Detection of Pesticides Based on Electrochemical Methods -- 4.2.2 Detection of Pesticides Based on Optical Methods -- 4.2.3 Detection of Pesticides Based on Raman Spectroscopy -- 4.3 Conclusion -- Acknowledgments -- References -- Chapter 5 Waterborne Bacteria Detection Based on Electrochemical Transducer -- 5.1 Introduction -- 5.2 Typical Waterborne Pathogens -- 5.3 Traditional Diagnostic Tools -- 5.4 Biosensors for Bacteria Detection in Water -- 5.4.1 Common Bioreceptors for Electrochemical Sensing of Foodborne and Waterborne Pathogenic Bacteria -- 5.4.2 Nanomaterials for Electrochemical Sensing of Waterborne Pathogenic Bacteria -- 5.5 Various Electrochemical Biosensors Available for Pathogenic Bacteria Detection in Water -- 5.5.1 Amperometric Detection -- 5.5.2 Impedimetric Detection -- 5.5.3 Conductometric Detection -- 5.5.4 Potentiometric Detection -- 5.6 Conclusion and Future Prospective -- Acknowledgments -- References -- Chapter 6 Zinc Oxide-Based Miniature Sensor Networks for Continuous Monitoring of Aqueous pH in Smart Agriculture -- 6.1 Introduction -- 6.2 Metal Oxide-Based Sensors and Detection Methods -- 6.3 pH Sensor Fabrication -- 6.3.1 Detection of pH: Materials and Method -- 6.3.2 Detection of pH: Surface Morphology of the Nanostructured ZnO and IDEs -- 6.3.3 Detection of pH: Electrochemical Sensing Performance -- 6.3.4 Detection of Real-Time pH Level in Smart Agriculture: Wireless Sensor Networks and Embedded System -- 6.4 Conclusion -- Acknowledgments -- References -- Section II Readout Electronic and Packaging -- Chapter 7 Integration and Packaging for Water Monitoring Systems -- 7.1 Introduction.
7.2 Advanced Water Quality Monitoring Systems -- 7.2.1 Multi-sensing on a Single Chip -- 7.2.2 Heterogeneous Integration -- 7.2.3 Case Study: MoboSens -- 7.3 Basics of Packaging -- 7.4 Hybrid Flexible Packaging -- 7.4.1 Interconnects -- 7.4.2 Thin Die Embedding -- 7.4.3 Encapsulation and Hermeticity -- 7.4.4 Roll to Roll Assembly -- 7.5 Conclusion -- References -- Chapter 8 A Survey on Transmit and Receive Circuits in Underwater Communication for Sensor Nodes -- 8.1 Introduction -- 8.2 Sensor Networks in an Underwater Environment -- 8.2.1 Acoustic Sensor Network -- 8.2.2 Electromagnetic (EM) Waves Underwater Sensors -- 8.3 Conclusion -- Acknowledgment -- References -- Section III Sensing Data Assessment and Deployment Including Extreme Environment and Advanced Pollutants -- Chapter 9 An Introduction to Microplastics, and Its Sampling Processes and Assessment Techniques -- 9.1 Introduction -- 9.1.1 Properties of Microplastics -- 9.1.2 Microplastics in Food Chain -- 9.1.3 Human Consumption of Microplastics and Possible Health Effects -- 9.1.4 Overview -- 9.2 Microplastic Sampling Tools -- 9.2.1 Non-Discrete Sampling Devices -- 9.2.2 Discrete Sampling Devices -- 9.2.3 Surface Microlayer Sampling Devices -- 9.3 Microplastics Separation -- 9.3.1 Separating Microplastics from Liquid Samples -- 9.3.2 Separating Microplastics from Sediments -- 9.4 Microplastic Sample Digestion Process -- 9.4.1 Acidic Digestion -- 9.4.2 Alkaline Digestion -- 9.4.3 Oxidizing Digestion -- 9.4.4 Enzymatic Degradation -- 9.5 Microplastic Identification and Classification -- 9.5.1 Visual Counting -- 9.5.2 Fluorescence -- 9.5.3 Destructive Analysis -- 9.5.4 Nondestructive Analysis -- 9.6 Conclusions -- Acknowledgments -- References -- Chapter 10 Advancements in Drone Applications for Water Quality Monitoring and the Need for Multispectral and Multi-Sensor Approaches.
10.1 Introduction -- 10.2 Airborne Drones for Environmental Remote Sensing -- 10.3 Drone Multispectral Remote Sensing -- 10.4 Integrating Multiple Complementary Sensor Strategies with a Single Drone -- 10.5 Conclusion -- Acknowledgment -- References -- Chapter 11 Sensors for Water Quality Assessment in Extreme Environmental Conditions -- 11.1 Introduction -- 11.2 Physical Parameters -- 11.2.1 Electrical Conductivity -- 11.2.2 Temperature -- 11.2.3 Pressure -- 11.3 Chemical Parameters -- 11.3.1 pH -- 11.3.2 Dissolved Oxygen and Chemical Oxygen Demand -- 11.3.3 Inorganic Content -- 11.4 Biological Parameters -- 11.5 Sensing in Extreme Water Environments -- 11.6 Discussion and Outlook -- 11.7 Conclusion -- References -- Section IV Sensing Data Analysis and Internet of Things with a Case Study -- Chapter 12 Toward Real-Time Water Quality Monitoring Using Wireless Sensor Networks -- 12.1 Introduction -- 12.2 Water Quality Monitoring Systems -- 12.2.1 Laboratory-Based WQM (LB-WQM) -- 12.2.2 Wireless Sensor Networks-Based WQM (WSNs-WQM) -- 12.3 The Use of Industry 4.0 Technologies for Real-Time WQM -- 12.4 Conclusion -- References -- Chapter 13 An Internet of Things-Enabled System for Monitoring Multiple Water Quality Parameters -- 13.1 Introduction -- 13.2 Water Quality Parameters and Related Sensors -- 13.3 Design and Fabrication of the Proposed Sensor -- 13.3.1 Sensor's Working Principle -- 13.4 Experimental Process -- 13.5 Autonomous System Development -- 13.5.1 Algorithm for Data Classification -- 13.6 Experimental Results -- 13.6.1 Sensor Characterization for Temperature, pH, Nitrate, Phosphate, Calcium, and Magnesium Measurement -- 13.6.2 Repeatability -- 13.6.3 Reproducibility -- 13.6.4 Real Sample Measurement and Validation -- 13.6.5 Data Collection -- 13.6.6 Power Consumption -- 13.7 Conclusion -- Acknowledgment -- References -- Index.
IEEE Press Series on Sensors -- EULA.
Record Nr. UNINA-9910876800003321
Manjakkal Libu  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui