top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Complex valued nonlinear adaptive filters : noncircularity, widely linear, and neural models / / Danilo P. Mandic, Vanessa Su Lee Goh
Complex valued nonlinear adaptive filters : noncircularity, widely linear, and neural models / / Danilo P. Mandic, Vanessa Su Lee Goh
Autore Mandic Danilo P
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2009
Descrizione fisica 1 online resource (345 p.)
Disciplina 621.382/2
Altri autori (Persone) GohVanessa Su Lee
Collana Adaptive and Learning Systems for Signal Processing, Communications and Control Series
Soggetto topico Functions of complex variables
Adaptive filters - Mathematical models
Filters (Mathematics)
Nonlinear theories
Neural networks (Computer science)
ISBN 9786612123375
9781282123373
1282123378
9780470742624
0470742623
9780470742631
0470742631
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models; Series Page; Contents; Preface; Acknowledgements; 1 The Magic of Complex Numbers; 1.1 History of Complex Numbers; 1.1.1 Hypercomplex Numbers; 1.2 History of Mathematical Notation; 1.3 Development of Complex Valued Adaptive Signal Processing; 2 Why Signal Processing in the Complex Domain?; 2.1 Some Examples of Complex Valued Signal Processing; 2.1.1 Duality Between Signal Representations in R and C; 2.2 Modelling in C is Not Only Convenient But Also Natural
2.3 Why Complex Modelling of Real Valued Processes?2.3.1 Phase Information in Imaging; 2.3.2 Modelling of Directional Processes; 2.4 Exploiting the Phase Information; 2.4.1 Synchronisation of Real Valued Processes; 2.4.2 Adaptive Filtering by Incorporating Phase Information; 2.5 Other Applications of Complex Domain Processing of Real Valued Signals; 2.6 Additional Benefits of Complex Domain Processing; 3 Adaptive Filtering Architectures; 3.1 Linear and Nonlinear Stochastic Models; 3.2 Linear and Nonlinear Adaptive Filtering Architectures; 3.2.1 Feedforward Neural Networks
3.2.2 Recurrent Neural Networks3.2.3 Neural Networks and Polynomial Filters; 3.3 State Space Representation and Canonical Forms; 4 Complex Nonlinear Activation Functions; 4.1 Properties of Complex Functions; 4.1.1 Singularities of Complex Functions; 4.2 Universal Function Approximation; 4.2.1 Universal Approximation in R; 4.3 Nonlinear Activation Functions for Complex Neural Networks; 4.3.1 Split-complex Approach; 4.3.2 Fully Complex Nonlinear Activation Functions; 4.4 Generalised Splitting Activation Functions (GSAF); 4.4.1 The Clifford Neuron
4.5 Summary: Choice of the Complex Activation Function5 Elements of CR Calculus; 5.1 Continuous Complex Functions; 5.2 The Cauchy-Riemann Equations; 5.3 Generalised Derivatives of Functions of Complex Variable; 5.3.1 CR Calculus; 5.3.2 Link between R- and C-derivatives; 5.4 CR-derivatives of Cost Functions; 5.4.1 The Complex Gradient; 5.4.2 The Complex Hessian; 5.4.3 The Complex Jacobian and Complex Differential; 5.4.4 Gradient of a Cost Function; 6 Complex Valued Adaptive Filters; 6.1 Adaptive Filtering Configurations; 6.2 The Complex Least Mean Square Algorithm
6.2.1 Convergence of the CLMS Algorithm6.3 Nonlinear Feedforward Complex Adaptive Filters; 6.3.1 Fully Complex Nonlinear Adaptive Filters; 6.3.2 Derivation of CNGD using CR calculus; 6.3.3 Split-complex Approach; 6.3.4 Dual Univariate Adaptive Filtering Approach (DUAF); 6.4 Normalisation of Learning Algorithms; 6.5 Performance of Feedforward Nonlinear Adaptive Filters; 6.6 Summary: Choice of a Nonlinear Adaptive Filter; 7 Adaptive Filters with Feedback; 7.1 Training of IIR Adaptive Filters; 7.1.1 Coefficient Update for Linear Adaptive IIR Filters
7.1.2 Training of IIR filters with Reduced Computational Complexity
Record Nr. UNINA-9910143132303321
Mandic Danilo P  
Hoboken, N.J., : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recurrent neural networks for prediction / / Danilo P. Mandic, Jonathon A. Chambers
Recurrent neural networks for prediction / / Danilo P. Mandic, Jonathon A. Chambers
Autore Mandic Danilo P
Pubbl/distr/stampa Chichester : , : John Wiley & Sons Ltd., , [2001]
Descrizione fisica 1 online resource (280 pages)
Disciplina 6.32
Collana Wiley series in adaptive and learning systems for signal processing , communications, and control
Soggetto topico Neural networks (Computer science)
Machine learning
ISBN 9786610554539
9780470845356
047084535X
9781280554537
1280554533
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911019096603321
Mandic Danilo P  
Chichester : , : John Wiley & Sons Ltd., , [2001]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui