top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied diffusion processes from engineering to finance [[electronic resource] /] / Jacques Janssen, Oronzio Manca, Raimando Manca
Applied diffusion processes from engineering to finance [[electronic resource] /] / Jacques Janssen, Oronzio Manca, Raimando Manca
Autore Janssen Jacques
Pubbl/distr/stampa London, : Wiley, 2013
Descrizione fisica 1 online resource (411 p.)
Disciplina 519.233
Altri autori (Persone) MancaOronzio
MancaRaimondo
Collana ISTE
Soggetto topico Business mathematics
Differential equations, Partial
Diffusion processes
Engineering mathematics
ISBN 1-118-57833-3
1-118-57834-1
1-299-47558-2
1-118-57668-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Contents; Introduction; Chapter 1. Diffusion Phenomena and Models; 1.1. General presentation of diffusion process; 1.2. General balance equations; 1.3. Heat conduction equation; 1.4. Initial and boundary conditions; Chapter 2. Probabilistic Models of Diffusion Processes; 2.1. Stochastic differentiation; 2.1.1. Definition; 2.1.2. Examples; 2.2. Itô's formula; 2.2.1. Stochastic differential of a product; 2.2.2. Itô's formula with time dependence; 2.2.3. Interpretation of Itô's formula; 2.2.4. Other extensions of Itô's formula; 2.3. Stochastic differential equations (SDE)
2.3.1. Existence and unicity general theorem (Gikhman and Skorokhod [GIK 68])2.3.2. Solution of SDE under the canonical form; 2.4. Itô and diffusion processes; 2.4.1. Itô processes; 2.4.2. Diffusion processes; 2.4.3. Kolmogorov equations; 2.5. Some particular cases of diffusion processes; 2.5.1. Reduced form; 2.5.2. The OUV (Ornstein-Uhlenbeck-Vasicek) SDE; 2.5.3. Solution of the SDE of Black-Scholes-Samuelson; 2.6. Multidimensional diffusion processes; 2.6.1. Multidimensional SDE; 2.6.2. Multidimensional Itô and diffusion processes; 2.6.3. Properties of multidimensional diffusion processes
2.6.4. Kolmogorov equations2.7. The Stroock-Varadhan martingale characterization of diffusions (Karlin and Taylor [KAR 81]); 2.8. The Feynman-Kac formula (Platen and Heath); 2.8.1. Terminal condition; 2.8.2. Discounted payoff function; 2.8.3. Discounted payoff function and payoff rate; Chapter 3. Solving Partial Differential Equations of Second Order; 3.1. Basic definitions on PDE of second order; 3.1.1. Notation; 3.1.2. Characteristics; 3.1.3. Canonical form of PDE; 3.2. Solving the heat equation; 3.2.1. Separation of variables
3.2.2. Separation of variables in the rectangular Cartesian coordinates3.2.3. Orthogonality of functions; 3.2.4. Fourier series; 3.2.5. Sturm-Liouville problem; 3.2.6. One-dimensional homogeneous problem in a finite medium; 3.3. Solution by the method of Laplace transform; 3.3.1. Definition of the Laplace transform; 3.3.2. Properties of the Laplace transform; 3.4. Green's functions; 3.4.1. Green's function as auxiliary problem to solve diffusive problems; 3.4.2. Analysis for determination of Green's function; Chapter 4. Problems in Finance; 4.1. Basic stochastic models for stock prices
4.1.1. The Black, Scholes and Samuelson model4.1.2. BSS model with deterministic variation of μ and s; 4.2. The bond investments; 4.2.1. Introduction; 4.2.2. Yield curve; 4.2.3. Yield to maturity for a financial investment and for a bond; 4.3. Dynamic deterministic continuous time model for instantaneous interest rate; 4.3.1. Instantaneous interest rate; 4.3.2. Particular cases; 4.3.3. Yield curve associated with instantaneous interest rate; 4.3.4. Examples of theoretical models; 4.4. Stochastic continuous time dynamic model for instantaneous interest rate; 4.4.1. The OUV stochastic model
4.4.2. The CIR model (1985)
Record Nr. UNINA-9910139005203321
Janssen Jacques  
London, : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied diffusion processes from engineering to finance / / Jacques Janssen, Oronzio Manca, Raimando Manca
Applied diffusion processes from engineering to finance / / Jacques Janssen, Oronzio Manca, Raimando Manca
Autore Janssen Jacques
Edizione [1st ed.]
Pubbl/distr/stampa London, : Wiley, 2013
Descrizione fisica 1 online resource (411 p.)
Disciplina 519.233
Altri autori (Persone) MancaOronzio
MancaRaimondo
Collana ISTE
Soggetto topico Business mathematics
Differential equations, Partial
Diffusion processes
Engineering mathematics
ISBN 9781118578339
1118578333
9781118578346
1118578341
9781299475588
1299475582
9781118576687
1118576683
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Contents; Introduction; Chapter 1. Diffusion Phenomena and Models; 1.1. General presentation of diffusion process; 1.2. General balance equations; 1.3. Heat conduction equation; 1.4. Initial and boundary conditions; Chapter 2. Probabilistic Models of Diffusion Processes; 2.1. Stochastic differentiation; 2.1.1. Definition; 2.1.2. Examples; 2.2. Itô's formula; 2.2.1. Stochastic differential of a product; 2.2.2. Itô's formula with time dependence; 2.2.3. Interpretation of Itô's formula; 2.2.4. Other extensions of Itô's formula; 2.3. Stochastic differential equations (SDE)
2.3.1. Existence and unicity general theorem (Gikhman and Skorokhod [GIK 68])2.3.2. Solution of SDE under the canonical form; 2.4. Itô and diffusion processes; 2.4.1. Itô processes; 2.4.2. Diffusion processes; 2.4.3. Kolmogorov equations; 2.5. Some particular cases of diffusion processes; 2.5.1. Reduced form; 2.5.2. The OUV (Ornstein-Uhlenbeck-Vasicek) SDE; 2.5.3. Solution of the SDE of Black-Scholes-Samuelson; 2.6. Multidimensional diffusion processes; 2.6.1. Multidimensional SDE; 2.6.2. Multidimensional Itô and diffusion processes; 2.6.3. Properties of multidimensional diffusion processes
2.6.4. Kolmogorov equations2.7. The Stroock-Varadhan martingale characterization of diffusions (Karlin and Taylor [KAR 81]); 2.8. The Feynman-Kac formula (Platen and Heath); 2.8.1. Terminal condition; 2.8.2. Discounted payoff function; 2.8.3. Discounted payoff function and payoff rate; Chapter 3. Solving Partial Differential Equations of Second Order; 3.1. Basic definitions on PDE of second order; 3.1.1. Notation; 3.1.2. Characteristics; 3.1.3. Canonical form of PDE; 3.2. Solving the heat equation; 3.2.1. Separation of variables
3.2.2. Separation of variables in the rectangular Cartesian coordinates3.2.3. Orthogonality of functions; 3.2.4. Fourier series; 3.2.5. Sturm-Liouville problem; 3.2.6. One-dimensional homogeneous problem in a finite medium; 3.3. Solution by the method of Laplace transform; 3.3.1. Definition of the Laplace transform; 3.3.2. Properties of the Laplace transform; 3.4. Green's functions; 3.4.1. Green's function as auxiliary problem to solve diffusive problems; 3.4.2. Analysis for determination of Green's function; Chapter 4. Problems in Finance; 4.1. Basic stochastic models for stock prices
4.1.1. The Black, Scholes and Samuelson model4.1.2. BSS model with deterministic variation of μ and s; 4.2. The bond investments; 4.2.1. Introduction; 4.2.2. Yield curve; 4.2.3. Yield to maturity for a financial investment and for a bond; 4.3. Dynamic deterministic continuous time model for instantaneous interest rate; 4.3.1. Instantaneous interest rate; 4.3.2. Particular cases; 4.3.3. Yield curve associated with instantaneous interest rate; 4.3.4. Examples of theoretical models; 4.4. Stochastic continuous time dynamic model for instantaneous interest rate; 4.4.1. The OUV stochastic model
4.4.2. The CIR model (1985)
Record Nr. UNINA-9910812555803321
Janssen Jacques  
London, : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Basic stochastic processes / / Pierre Devolder, Jacques Janssen, Raimondo Manca
Basic stochastic processes / / Pierre Devolder, Jacques Janssen, Raimondo Manca
Autore Devolder Pierre
Edizione [First edition.]
Pubbl/distr/stampa London, England : , : Wiley, , 2015
Descrizione fisica 1 online resource (327 pages)
Disciplina 519.2
Collana Mathematics and Statistics Series
Soggetto topico Stochastic processes
ISBN 1-119-18454-1
1-119-18457-6
1-119-18458-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Basic Probabilistic Tools for Stochastic Modeling / Pierre Devolder, Jacques Janssen, Raimondo Manca -- Chapter 2. Homogeneous and Non-Homogeneous Renewal Models / Pierre Devolder, Jacques Janssen, Raimondo Manca -- Chapter 3. Markov Chains / Pierre Devolder, Jacques Janssen, Raimondo Manca -- Chapter 4. Homogeneous and Non-Homogeneous Semi-Markov Models / Pierre Devolder, Jacques Janssen, Raimondo Manca -- Chapter 5. Stochastic Calculus / Pierre Devolder, Jacques Janssen, Raimondo Manca -- Chapter 6. Lévy Processes / Pierre Devolder, Jacques Janssen, Raimondo -- Chapter 7. Actuarial Evaluation, VaR and Stochastic Interest Rate Models.
Record Nr. UNINA-9910131640803321
Devolder Pierre  
London, England : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Basic stochastic processes / / Pierre Devolder, Jacques Janssen, Raimondo Manca
Basic stochastic processes / / Pierre Devolder, Jacques Janssen, Raimondo Manca
Autore Devolder Pierre
Edizione [First edition.]
Pubbl/distr/stampa London, England : , : Wiley, , 2015
Descrizione fisica 1 online resource (327 pages)
Disciplina 519.2
Collana Mathematics and Statistics Series
Soggetto topico Stochastic processes
ISBN 1-119-18454-1
1-119-18457-6
1-119-18458-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Basic Probabilistic Tools for Stochastic Modeling / Pierre Devolder, Jacques Janssen, Raimondo Manca -- Chapter 2. Homogeneous and Non-Homogeneous Renewal Models / Pierre Devolder, Jacques Janssen, Raimondo Manca -- Chapter 3. Markov Chains / Pierre Devolder, Jacques Janssen, Raimondo Manca -- Chapter 4. Homogeneous and Non-Homogeneous Semi-Markov Models / Pierre Devolder, Jacques Janssen, Raimondo Manca -- Chapter 5. Stochastic Calculus / Pierre Devolder, Jacques Janssen, Raimondo Manca -- Chapter 6. Lévy Processes / Pierre Devolder, Jacques Janssen, Raimondo -- Chapter 7. Actuarial Evaluation, VaR and Stochastic Interest Rate Models.
Record Nr. UNINA-9910816655903321
Devolder Pierre  
London, England : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical fianance [[electronic resource] ] : deterministic and stochastic models / / Jacques Janssen, Raimondo Manca, Ernesto Volpe di Prignano
Mathematical fianance [[electronic resource] ] : deterministic and stochastic models / / Jacques Janssen, Raimondo Manca, Ernesto Volpe di Prignano
Autore Janssen Jacques <1939->
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (874 p.)
Disciplina 332.01/51922
332.0151
Altri autori (Persone) MancaRaimondo
Volpe di PrignanoErnesto
Collana ISTE
Soggetto topico Finance - Mathematical models
Stochastic processes
Investments - Mathematics
ISBN 1-118-62241-3
1-282-16539-9
9786612165399
0-470-61169-3
0-470-39432-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Mathematical Finance: Deterministic and Stochastic Models; Table of Contents; Preface; Part I. Deterministic Models; Chapter 1. Introductory Elements to Financial Mathematics; 1.1. The object of traditional financial mathematics; 1.2. Financial supplies. Preference and indifference relations; 1.2.1. The subjective aspect of preferences; 1.2.2. Objective aspects of financial laws. The equivalence principle; 1.3. The dimensional viewpoint of financial quantities; Chapter 2. Theory of Financial Laws; 2.1. Indifference relations and exchange laws for simple financial operations
2.2. Two variable laws and exchange factors2.3. Derived quantities in the accumulation and discount laws; 2.3.1. Accumulation; 2.3.2. Discounting; 2.4. Decomposable financial lawas; 2.4.1. Weak and strong decomposability properties: equivalence relations; 2.4.2. Equivalence classes: characteristic properties of decomposable laws; 2.5. Uniform financial laws: mean evaluations; 2.5.1. Theory of uniform exchange laws; 2.5.2. An outline of associative averages; 2.5.3. Average duration and average maturity; 2.5.4. Average index of return: average rate
2.6. Uniform decomposable financial laws: exponential regimeChapter 3. Uniform Regimes in Financial Practice; 3.1. Preliminary comments; 3.1.1. Equivalent rates and intensities; 3.2. The regime of simple delayed interest (SDI); 3.3. The regime of rational discount (RD); 3.4. The regime of simple discount (SD); 3.5. The regime of simple advance interest (SAI); 3.6. Comments on the SDI, RD, SD and SAI uniform regimes; 3.6.1. Exchange factors (EF); 3.6.2. Corrective operations; 3.6.3. Initial averaged intensities and instantaneous intensity
3.6.4. Average length in the linear law and their conjugates3.6.5. Average rates in linear law and their conjugated laws; 3.7. The compound interest regime; 3.7.1. Conversion of interests; 3.7.2. The regime of discretely compound interest (DCI); 3.7.3. The regime of continuously compound interest (CCI); 3.8. The regime of continuously comound discount (CCD); 3.9. Complements and exercises on compound regimes; 3.10. Comparison of laws of different regimes; Chapter 4. Financial Operations and their Evaluation: Decisional Criteria; 4.1. Calculation of capital values: fairness
4.2. Retrospective and prospective reserve4.3. Usufruct and bare ownership in "discrete" and "continuous" cases; 4.4. Methods and models for financial decisions and choices; 4.4.1. Internal rate as return index; 4.4.2. Outline on GDCF and "internal financial law"; 4.4.3. Classifications and propert of financial projects; 4.4.4. Decisional criteria for financial projects; 4.4.5. Choice criteria for mutually exclusive financial projects; 4.4.6. Mixed projects: the TRM method; 4.4.7. Dicisional criteria on mixed projects; 4.5. Appendix: outline on numberical methods for the solution of equations
4.5.1. General aspects
Record Nr. UNINA-9910139467903321
Janssen Jacques <1939->  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical fianance [[electronic resource] ] : deterministic and stochastic models / / Jacques Janssen, Raimondo Manca, Ernesto Volpe di Prignano
Mathematical fianance [[electronic resource] ] : deterministic and stochastic models / / Jacques Janssen, Raimondo Manca, Ernesto Volpe di Prignano
Autore Janssen Jacques <1939->
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (874 p.)
Disciplina 332.01/51922
332.0151
Altri autori (Persone) MancaRaimondo
Volpe di PrignanoErnesto
Collana ISTE
Soggetto topico Finance - Mathematical models
Stochastic processes
Investments - Mathematics
ISBN 1-118-62241-3
1-282-16539-9
9786612165399
0-470-61169-3
0-470-39432-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Mathematical Finance: Deterministic and Stochastic Models; Table of Contents; Preface; Part I. Deterministic Models; Chapter 1. Introductory Elements to Financial Mathematics; 1.1. The object of traditional financial mathematics; 1.2. Financial supplies. Preference and indifference relations; 1.2.1. The subjective aspect of preferences; 1.2.2. Objective aspects of financial laws. The equivalence principle; 1.3. The dimensional viewpoint of financial quantities; Chapter 2. Theory of Financial Laws; 2.1. Indifference relations and exchange laws for simple financial operations
2.2. Two variable laws and exchange factors2.3. Derived quantities in the accumulation and discount laws; 2.3.1. Accumulation; 2.3.2. Discounting; 2.4. Decomposable financial lawas; 2.4.1. Weak and strong decomposability properties: equivalence relations; 2.4.2. Equivalence classes: characteristic properties of decomposable laws; 2.5. Uniform financial laws: mean evaluations; 2.5.1. Theory of uniform exchange laws; 2.5.2. An outline of associative averages; 2.5.3. Average duration and average maturity; 2.5.4. Average index of return: average rate
2.6. Uniform decomposable financial laws: exponential regimeChapter 3. Uniform Regimes in Financial Practice; 3.1. Preliminary comments; 3.1.1. Equivalent rates and intensities; 3.2. The regime of simple delayed interest (SDI); 3.3. The regime of rational discount (RD); 3.4. The regime of simple discount (SD); 3.5. The regime of simple advance interest (SAI); 3.6. Comments on the SDI, RD, SD and SAI uniform regimes; 3.6.1. Exchange factors (EF); 3.6.2. Corrective operations; 3.6.3. Initial averaged intensities and instantaneous intensity
3.6.4. Average length in the linear law and their conjugates3.6.5. Average rates in linear law and their conjugated laws; 3.7. The compound interest regime; 3.7.1. Conversion of interests; 3.7.2. The regime of discretely compound interest (DCI); 3.7.3. The regime of continuously compound interest (CCI); 3.8. The regime of continuously comound discount (CCD); 3.9. Complements and exercises on compound regimes; 3.10. Comparison of laws of different regimes; Chapter 4. Financial Operations and their Evaluation: Decisional Criteria; 4.1. Calculation of capital values: fairness
4.2. Retrospective and prospective reserve4.3. Usufruct and bare ownership in "discrete" and "continuous" cases; 4.4. Methods and models for financial decisions and choices; 4.4.1. Internal rate as return index; 4.4.2. Outline on GDCF and "internal financial law"; 4.4.3. Classifications and propert of financial projects; 4.4.4. Decisional criteria for financial projects; 4.4.5. Choice criteria for mutually exclusive financial projects; 4.4.6. Mixed projects: the TRM method; 4.4.7. Dicisional criteria on mixed projects; 4.5. Appendix: outline on numberical methods for the solution of equations
4.5.1. General aspects
Record Nr. UNINA-9910677466003321
Janssen Jacques <1939->  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical fianance : deterministic and stochastic models / / Jacques Janssen, Raimondo Manca, Ernesto Volpe di Prignano
Mathematical fianance : deterministic and stochastic models / / Jacques Janssen, Raimondo Manca, Ernesto Volpe di Prignano
Autore Janssen Jacques <1939->
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (874 p.)
Disciplina 332.01/51922
Altri autori (Persone) MancaRaimondo
Volpe di PrignanoErnesto
Collana ISTE
Soggetto topico Finance - Mathematical models
Stochastic processes
Investments - Mathematics
ISBN 9786612165399
9781118622414
1118622413
9781282165397
1282165399
9780470611692
0470611693
9780470394328
0470394323
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Mathematical Finance: Deterministic and Stochastic Models; Table of Contents; Preface; Part I. Deterministic Models; Chapter 1. Introductory Elements to Financial Mathematics; 1.1. The object of traditional financial mathematics; 1.2. Financial supplies. Preference and indifference relations; 1.2.1. The subjective aspect of preferences; 1.2.2. Objective aspects of financial laws. The equivalence principle; 1.3. The dimensional viewpoint of financial quantities; Chapter 2. Theory of Financial Laws; 2.1. Indifference relations and exchange laws for simple financial operations
2.2. Two variable laws and exchange factors2.3. Derived quantities in the accumulation and discount laws; 2.3.1. Accumulation; 2.3.2. Discounting; 2.4. Decomposable financial lawas; 2.4.1. Weak and strong decomposability properties: equivalence relations; 2.4.2. Equivalence classes: characteristic properties of decomposable laws; 2.5. Uniform financial laws: mean evaluations; 2.5.1. Theory of uniform exchange laws; 2.5.2. An outline of associative averages; 2.5.3. Average duration and average maturity; 2.5.4. Average index of return: average rate
2.6. Uniform decomposable financial laws: exponential regimeChapter 3. Uniform Regimes in Financial Practice; 3.1. Preliminary comments; 3.1.1. Equivalent rates and intensities; 3.2. The regime of simple delayed interest (SDI); 3.3. The regime of rational discount (RD); 3.4. The regime of simple discount (SD); 3.5. The regime of simple advance interest (SAI); 3.6. Comments on the SDI, RD, SD and SAI uniform regimes; 3.6.1. Exchange factors (EF); 3.6.2. Corrective operations; 3.6.3. Initial averaged intensities and instantaneous intensity
3.6.4. Average length in the linear law and their conjugates3.6.5. Average rates in linear law and their conjugated laws; 3.7. The compound interest regime; 3.7.1. Conversion of interests; 3.7.2. The regime of discretely compound interest (DCI); 3.7.3. The regime of continuously compound interest (CCI); 3.8. The regime of continuously comound discount (CCD); 3.9. Complements and exercises on compound regimes; 3.10. Comparison of laws of different regimes; Chapter 4. Financial Operations and their Evaluation: Decisional Criteria; 4.1. Calculation of capital values: fairness
4.2. Retrospective and prospective reserve4.3. Usufruct and bare ownership in "discrete" and "continuous" cases; 4.4. Methods and models for financial decisions and choices; 4.4.1. Internal rate as return index; 4.4.2. Outline on GDCF and "internal financial law"; 4.4.3. Classifications and propert of financial projects; 4.4.4. Decisional criteria for financial projects; 4.4.5. Choice criteria for mutually exclusive financial projects; 4.4.6. Mixed projects: the TRM method; 4.4.7. Dicisional criteria on mixed projects; 4.5. Appendix: outline on numberical methods for the solution of equations
4.5.1. General aspects
Record Nr. UNINA-9911019439703321
Janssen Jacques <1939->  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic methods for pension funds [[electronic resource] /] / Pierre Devolder, Jacques Janssen, Raimondo Manca
Stochastic methods for pension funds [[electronic resource] /] / Pierre Devolder, Jacques Janssen, Raimondo Manca
Autore Devolder Pierre
Pubbl/distr/stampa London, : ISTE Ltd.
Descrizione fisica 1 online resource (476 p.)
Disciplina 332.67/2540151923
332.672540151923
Altri autori (Persone) JanssenJacques <1939->
MancaRaimondo
Collana Applied stochastic methods series
Soggetto topico Pension trusts - Management
Pension trusts - Mathematics
Financial risk management - Mathematical models
Stochastic models
Soggetto genere / forma Electronic books.
ISBN 1-118-56203-8
1-299-31580-1
1-118-56593-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Stochastic Methods for Pension Funds; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Introduction: Pensions in Perspective; 1.1. Pension issues; 1.1.1. The challenge; 1.1.2. Some figures; 1.2. Pension scheme; 1.2.1. Definition; 1.2.2. The four dimensions of a pension scheme; 1.3. Pension and risks; 1.3.1. Demographic risks; 1.3.2. Financial risks; 1.3.3. Impact of the risks on various kinds of pension schemes; 1.3.4. The time horizon of a pension scheme; 1.4. The multi-pillar philosophy; Chapter 2. Classical Actuarial Theory of Pension Funding
2.1. General equilibrium equation of a pension scheme2.1.1. Principles; 2.1.2. The retrospective reserve; 2.1.3. The prospective reserve; 2.1.4. Equilibrated pension funding; 2.1.5. Decomposition of the reserve; 2.1.6. Classification of the methods; 2.2. General principles of funding mechanisms for DB Schemes; 2.3. Particular funding methods; 2.3.1. Unit credit cost methods; 2.3.2. Level premium methods; 2.3.3. Aggregate cost methods; Chapter 3. Deterministic and Stochastic Optimal Control; 3.1. Introduction; 3.2. Deterministic optimal control
3.2.1. Formulation of the optimal control problem3.3. Necessary conditions for optimality; 3.3.1. Bellman function; 3.3.2. Bellman optimality equation; 3.3.3. Hamilton-Jacobi equation; 3.3.4. The synthesis function; 3.3.5. Other types of optimal controls; 3.3.6. Example: the classical quadratic/linear control problem; 3.4. The maximum principle; 3.4.1. The maximum principle from the dynamic programming approach; 3.5. Extension to the one-dimensional stochastic optimal control; 3.5.1. Formulation of the one-dimensional stochastic optimal control problem
3.5.2. Necessary conditions for one-dimensional stochastic optimality3.5.3. Extension to the multi-dimensional stochastic optimal control; 3.5.4. Dynamic programming principle; 3.5.5. The Hamilton-Jacobi-Bellman equation; 3.6. Examples; 3.6.1. Merton portfolio allocation problem; Chapter 4. Defined Contribution and Defined Benefit Pension Plans; 4.1. Introduction; 4.2. The defined benefit method; 4.3. The defined contribution method; 4.3.1. The model; 4.3.2. The capitalization system; 4.4. The notional defined contribution (NDC) method; 4.4.1. Historical preliminaries
4.4.2. The Dini reform transformation coefficients4.4.3. Theoretical preliminaries; 4.4.4. The construction of a unitary pension present value; 4.4.5. Numerical example and results comparison; 4.5. Conclusions; Chapter 5. Fair and Market Values and Interest Rate Stochastic Models; 5.1. Fair value; 5.2. Market value of financial flows; 5.3. Yield curve; 5.4. Yield to maturity for a financial investment and for a bond; 5.5. Dynamic deterministic continuous time model for an instantaneous interest rate; 5.5.1. Instantaneous interest rate; 5.5.2. Particular cases
5.5.3. Yield curve associated with an instantaneous interest rate
Record Nr. UNINA-9910139239203321
Devolder Pierre  
London, : ISTE Ltd.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic methods for pension funds [[electronic resource] /] / Pierre Devolder, Jacques Janssen, Raimondo Manca
Stochastic methods for pension funds [[electronic resource] /] / Pierre Devolder, Jacques Janssen, Raimondo Manca
Autore Devolder Pierre
Pubbl/distr/stampa London, : ISTE Ltd.
Descrizione fisica 1 online resource (476 p.)
Disciplina 332.67/2540151923
332.672540151923
Altri autori (Persone) JanssenJacques <1939->
MancaRaimondo
Collana Applied stochastic methods series
Soggetto topico Pension trusts - Management
Pension trusts - Mathematics
Financial risk management - Mathematical models
Stochastic models
ISBN 1-118-56203-8
1-299-31580-1
1-118-56593-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Stochastic Methods for Pension Funds; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Introduction: Pensions in Perspective; 1.1. Pension issues; 1.1.1. The challenge; 1.1.2. Some figures; 1.2. Pension scheme; 1.2.1. Definition; 1.2.2. The four dimensions of a pension scheme; 1.3. Pension and risks; 1.3.1. Demographic risks; 1.3.2. Financial risks; 1.3.3. Impact of the risks on various kinds of pension schemes; 1.3.4. The time horizon of a pension scheme; 1.4. The multi-pillar philosophy; Chapter 2. Classical Actuarial Theory of Pension Funding
2.1. General equilibrium equation of a pension scheme2.1.1. Principles; 2.1.2. The retrospective reserve; 2.1.3. The prospective reserve; 2.1.4. Equilibrated pension funding; 2.1.5. Decomposition of the reserve; 2.1.6. Classification of the methods; 2.2. General principles of funding mechanisms for DB Schemes; 2.3. Particular funding methods; 2.3.1. Unit credit cost methods; 2.3.2. Level premium methods; 2.3.3. Aggregate cost methods; Chapter 3. Deterministic and Stochastic Optimal Control; 3.1. Introduction; 3.2. Deterministic optimal control
3.2.1. Formulation of the optimal control problem3.3. Necessary conditions for optimality; 3.3.1. Bellman function; 3.3.2. Bellman optimality equation; 3.3.3. Hamilton-Jacobi equation; 3.3.4. The synthesis function; 3.3.5. Other types of optimal controls; 3.3.6. Example: the classical quadratic/linear control problem; 3.4. The maximum principle; 3.4.1. The maximum principle from the dynamic programming approach; 3.5. Extension to the one-dimensional stochastic optimal control; 3.5.1. Formulation of the one-dimensional stochastic optimal control problem
3.5.2. Necessary conditions for one-dimensional stochastic optimality3.5.3. Extension to the multi-dimensional stochastic optimal control; 3.5.4. Dynamic programming principle; 3.5.5. The Hamilton-Jacobi-Bellman equation; 3.6. Examples; 3.6.1. Merton portfolio allocation problem; Chapter 4. Defined Contribution and Defined Benefit Pension Plans; 4.1. Introduction; 4.2. The defined benefit method; 4.3. The defined contribution method; 4.3.1. The model; 4.3.2. The capitalization system; 4.4. The notional defined contribution (NDC) method; 4.4.1. Historical preliminaries
4.4.2. The Dini reform transformation coefficients4.4.3. Theoretical preliminaries; 4.4.4. The construction of a unitary pension present value; 4.4.5. Numerical example and results comparison; 4.5. Conclusions; Chapter 5. Fair and Market Values and Interest Rate Stochastic Models; 5.1. Fair value; 5.2. Market value of financial flows; 5.3. Yield curve; 5.4. Yield to maturity for a financial investment and for a bond; 5.5. Dynamic deterministic continuous time model for an instantaneous interest rate; 5.5.1. Instantaneous interest rate; 5.5.2. Particular cases
5.5.3. Yield curve associated with an instantaneous interest rate
Record Nr. UNINA-9910830121303321
Devolder Pierre  
London, : ISTE Ltd.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic methods for pension funds / / Pierre Devolder, Jacques Janssen, Raimondo Manca
Stochastic methods for pension funds / / Pierre Devolder, Jacques Janssen, Raimondo Manca
Autore Devolder Pierre
Pubbl/distr/stampa London, : ISTE Ltd.
Descrizione fisica 1 online resource (476 p.)
Disciplina 332.67/2540151923
Altri autori (Persone) JanssenJacques <1939->
MancaRaimondo
Collana Applied stochastic methods series
Soggetto topico Pension trusts - Management
Pension trusts - Mathematics
Financial risk management - Mathematical models
Stochastic models
ISBN 1-118-56203-8
1-299-31580-1
1-118-56593-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Stochastic Methods for Pension Funds; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Introduction: Pensions in Perspective; 1.1. Pension issues; 1.1.1. The challenge; 1.1.2. Some figures; 1.2. Pension scheme; 1.2.1. Definition; 1.2.2. The four dimensions of a pension scheme; 1.3. Pension and risks; 1.3.1. Demographic risks; 1.3.2. Financial risks; 1.3.3. Impact of the risks on various kinds of pension schemes; 1.3.4. The time horizon of a pension scheme; 1.4. The multi-pillar philosophy; Chapter 2. Classical Actuarial Theory of Pension Funding
2.1. General equilibrium equation of a pension scheme2.1.1. Principles; 2.1.2. The retrospective reserve; 2.1.3. The prospective reserve; 2.1.4. Equilibrated pension funding; 2.1.5. Decomposition of the reserve; 2.1.6. Classification of the methods; 2.2. General principles of funding mechanisms for DB Schemes; 2.3. Particular funding methods; 2.3.1. Unit credit cost methods; 2.3.2. Level premium methods; 2.3.3. Aggregate cost methods; Chapter 3. Deterministic and Stochastic Optimal Control; 3.1. Introduction; 3.2. Deterministic optimal control
3.2.1. Formulation of the optimal control problem3.3. Necessary conditions for optimality; 3.3.1. Bellman function; 3.3.2. Bellman optimality equation; 3.3.3. Hamilton-Jacobi equation; 3.3.4. The synthesis function; 3.3.5. Other types of optimal controls; 3.3.6. Example: the classical quadratic/linear control problem; 3.4. The maximum principle; 3.4.1. The maximum principle from the dynamic programming approach; 3.5. Extension to the one-dimensional stochastic optimal control; 3.5.1. Formulation of the one-dimensional stochastic optimal control problem
3.5.2. Necessary conditions for one-dimensional stochastic optimality3.5.3. Extension to the multi-dimensional stochastic optimal control; 3.5.4. Dynamic programming principle; 3.5.5. The Hamilton-Jacobi-Bellman equation; 3.6. Examples; 3.6.1. Merton portfolio allocation problem; Chapter 4. Defined Contribution and Defined Benefit Pension Plans; 4.1. Introduction; 4.2. The defined benefit method; 4.3. The defined contribution method; 4.3.1. The model; 4.3.2. The capitalization system; 4.4. The notional defined contribution (NDC) method; 4.4.1. Historical preliminaries
4.4.2. The Dini reform transformation coefficients4.4.3. Theoretical preliminaries; 4.4.4. The construction of a unitary pension present value; 4.4.5. Numerical example and results comparison; 4.5. Conclusions; Chapter 5. Fair and Market Values and Interest Rate Stochastic Models; 5.1. Fair value; 5.2. Market value of financial flows; 5.3. Yield curve; 5.4. Yield to maturity for a financial investment and for a bond; 5.5. Dynamic deterministic continuous time model for an instantaneous interest rate; 5.5.1. Instantaneous interest rate; 5.5.2. Particular cases
5.5.3. Yield curve associated with an instantaneous interest rate
Record Nr. UNINA-9911019283403321
Devolder Pierre  
London, : ISTE Ltd.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui