top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Customized Technologies for Sustainable Management of Industrial Wastewater : A Circular Economy Approach
Customized Technologies for Sustainable Management of Industrial Wastewater : A Circular Economy Approach
Autore Fosso-Kankeu Elvis
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (636 pages)
Disciplina 628.3
Altri autori (Persone) MasindiVhahangwele
MareeJohannes
MambaBhekie B
ISBN 1-394-21456-1
1-394-21455-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Stepwise Treatment of Industrial Wastewater Using a Combination of Approaches -- Chapter 1 A Review of the Reducing and Alkalinity-Producing System (RAPS) for Acid Mine Drainage Neutralization -- 1.1 Background -- 1.1.1 AMD Generation -- 1.1.2 Effects of AMD on the Environment -- 1.1.3 AMD Treatment Options -- 1.1.3.1 Passive Treatment Systems -- 1.1.3.2 Selection Criteria -- 1.2 The Reducing and Alkalinity-Producing System (RAPS) as a Passive Treatment System -- 1.2.1 Setup of the RAPS -- 1.2.2 Principles of the RAPS -- 1.2.2.1 Sulfate-Reducing Bacteria -- 1.2.2.2 Limestone Dissolution -- 1.2.2.3 Metal Removal Processes -- 1.2.2.4 Performance of RAPS in Treating AMD -- 1.2.2.5 Advantages of RAPS -- 1.2.2.6 Disadvantages -- 1.2.3 Novelty Opportunities of the RAPS -- 1.2.4 Applicability of the RAPS in South Africa -- 1.3 Geochemical Modeling for the Prediction of the Dispersion of Metals in Water Systems -- 1.3.1 Equilibrium Models -- 1.3.1.1 PHREEQC -- 1.3.2 Kinetics Models -- 1.3.2.1 TOUGHREACT -- 1.3.3 Transport Models -- 1.3.3.1 MODFLOW -- 1.3.4 Empirical Modeling -- 1.4 Conclusion -- References -- Chapter 2 Novel Hybrid Nature-Based Solutions for the Sustainable Treatment of Industrial Wastewater: Alkaline and Acid Mine Drainage -- 2.1 Introduction -- 2.1.1 Importance of Industrial and Mining Waste Water Treatment -- 2.1.2 Nature of Alkaline and AMD Water Influencing Treatment Methods Toward Environmental and Public Health Protection -- 2.1.2.1 Alkaline Wastewater -- 2.1.2.2 Acid Mine Drainage -- 2.1.3 Challenges with Conventional Treatment Methods -- 2.1.3.1 Alkaline Wastewater -- 2.1.3.2 Acid Mine Drainage -- 2.2 Nature-Based Treatment Options for Environmental and Public Health Protection -- 2.2.1 Importance -- 2.2.2 Constructed Wetlands.
2.2.3 Bioremediation -- 2.2.3.1 Microbial Bioremediation -- 2.2.3.2 Phyco- and Phytoremediation -- 2.2.4 Natural Filtration Systems -- 2.3 NBS for Industrial and Mining Wastewater Treatment -- 2.3.1 Alkaline Wastewater -- 2.3.2 Acid Mine Drainage -- 2.3.2.1 Sulfate-Reducing Bacteria -- 2.3.2.2 Integrated Constructed Surface Water Wetlands and Algae Pond Systems -- 2.3.2.3 Algal-Bacterial Integrated Ponding System -- 2.3.2.4 Ecologically Engineered Wetlands -- 2.4 Novel Hybrid NBS -- 2.4.1 Concept -- 2.4.2 Framework for Selecting Hybrid NBS for Treating Alkaline and AMD Wastewater -- 2.4.3 Design Principles for NBS for Treating Alkaline and AMD -- 2.4.4 Importance of Addressing Sustainable Development Goals (SDGs) and Contributing to the Global Sustainability Agenda -- 2.5 Conclusion -- References -- Chapter 3 Use of Chemical and Physical Techniques in Stepwise Treatment of Industrial Wastewater -- 3.1 Introduction -- 3.2 Stepwise Treatment of Industrial Wastewater Using Chemical Operations -- 3.2.1 Stepwise Removal of Heavy Metal Ions from Metallurgical Wastewater Stream -- 3.2.1.1 Removal of Chromium and Other Heavy Metal Ions -- 3.2.1.2 Removal of Heavy Metal Ions and Organic Pollutants in Wastewater by Electrocoagulation -- 3.2.2 Stepwise Treatment of Wastewater Streams from Automotive Assembly Operations -- 3.2.3 Stepwise Treatment of Wastewater Streams from Abattoir Processing Industries -- 3.2.3.1 Dissolved Air Floatation and Anaerobic Treatment -- 3.2.3.2 Physicochemical and Advanced Oxidation Processes for Abattoir Wastewater Treatment -- 3.2.4 Stepwise Treatment of Wastewater Streams from Pharmaceutical Operations -- 3.2.5 Stepwise Treatment of Wastewater Streams from Dairy Processing Industries -- 3.2.6 Stepwise Treatment of Wastewater Streams from Food Processing Operations.
3.2.7 Stepwise Treatment of Wastewater Streams from Textile Manufacturing -- References -- Chapter 4 Trends on the Occurrence, Challenges, Migration, and Remediation of Emerging Contaminants in Aquatic Environments -- 4.1 Introduction -- 4.2 Emerging Contaminants in the Environment -- 4.3 Classes of Emerging Contaminants -- 4.3.1 Personal Care Products -- 4.3.2 Pharmaceuticals -- 4.3.2.1 Different Type of Pharmaceutical Compounds -- 4.3.3 Pesticides -- 4.4 Sources of Emerging Contaminants -- 4.4.1 Agricultural Practices -- 4.4.2 Wastewater Treatment Facilities -- 4.4.3 Landfill Leachates -- 4.4.4 Industrial Effluents and Pharmaceutical Companies -- 4.4.5 Hospital Wastes -- 4.4.6 Lifestyle Waste -- 4.5 The Effects of the Emerging Contaminants -- 4.5.1 Effects on Human and Animal Health -- 4.5.2 Effects on the Environment and Ecosystem -- 4.6 Variation of Emerging Contaminants in Aqueous Environments -- 4.7 Required Limits of Potable Water Quality Standards and Guidelines -- 4.8 Treatment of Emerging Contaminants -- 4.8.1 Oxidation -- 4.8.1.1 Chlorination -- 4.8.1.2 Potassium Permanganate Solution -- 4.8.1.3 Ozonation -- 4.8.1.4 Adsorption -- 4.8.1.5 Filtration -- 4.8.1.6 Photocatalysis -- 4.8.1.7 Electro Fenton Process -- 4.8.1.8 Electrocoagulation -- 4.9 Conclusions -- 4.10 Future Research Outlook -- Acknowledgments -- References -- Chapter 5 An Update on the Progress, Trends and Challenges of Drinking Water Treatment and Provision -- 5.1 Raw Water -- 5.2 Drinking Water Treatment Process -- 5.3 Functionalities of Drinking Water Treatment Process -- 5.4 Final Water and Challenges -- 5.5 Distribution Water Challenges -- 5.6 Types of Disinfectants and Oxidants -- 5.6.1 Chlorine Gas -- 5.6.2 Chlorine Dioxide -- 5.6.3 Sodium Hypochlorite Solution -- 5.6.4 Calcium Hypochlorite -- 5.6.5 Chloramines -- 5.6.6 Ozonation -- 5.6.7 Ultraviolet Light (UV).
5.6.8 Photocatalysis -- 5.7 Role of Chlorine in Water Treatment -- 5.7.1 Aqueous Chlorine Chemistry -- 5.7.2 Organic Compounds -- 5.7.3 Inorganic Compounds -- 5.8 Effects of Chlorine as a Post-Disinfectant -- 5.9 Regulatory Requirements -- 5.10 Chlorine Decay -- 5.10.1 Chlorine Degradation in Water Distribution Network -- 5.10.1.1 Bulk Decay Reaction Mechanism -- 5.10.1.2 Wall Reaction Mechanism -- 5.11 Chlorine Decay Models -- 5.11.1 Zero-Order Model -- 5.11.2 First-Order Model -- 5.11.3 Second-Order Model -- 5.11.4 The Nth-Order Model -- 5.11.5 Determining the Bulk Reaction Order of the Samples -- 5.12 The Limitations of Traditional Chlorine Decay Models -- 5.13 Experimental Approaches -- 5.13.1 Bulk Chlorine Decay Using Analytical Methods -- 5.13.1.1 Effect of Water Indexes (Dissolved Organic Carbon, UV254, Ammonia, and EEM) -- 5.13.1.2 Effect of Natural Organic Matters Toward Chlorine Decay -- 5.13.1.3 Effect of Temperature and pH -- 5.13.2 Wall Chlorine Decay Using Analytical Methods -- 5.13.2.1 The Effect of Biofilm -- 5.14 Simulations and Mathematical Estimates -- 5.14.1 Bulk Chlorine Decay Rate Using Simulations and Mathematical Estimates -- 5.14.1.1 Effect of Temperature on Bulk Chlorine Decay Rate (NOM and THMs) -- 5.14.1.2 Influence of Hydraulic Conditions -- 5.14.1.3 The Initial Chlorine Dose Effect on Bulk Decay Rate -- 5.15 The Rate Constant of Chlorine Decay with the Wall of Water Pipe -- 5.15.1 Effect of Hydraulic Conditions -- 5.16 Tools for Simulations and Mathematical Estimates -- 5.16.1 Integrated Chlorine Decay Mathematical Models Derived from Traditional Models -- 5.17 Software Packages for Chlorine Decay Simulations -- 5.17.1 EPANET Software -- 5.17.2 COMSOL Multiphysics Software -- 5.17.3 AQUASIM Software -- 5.17.4 Other Modeling Software -- 5.18 Challenges of Simulations -- 5.19 Conclusion and Avenues for Future Research.
5.19.1 Conclusion -- 5.19.2 Avenues for Future Research -- Acknowledgments -- References -- Part II: Treatment of Industrial Wastewater Using Sustainable Technologies that are Effective and Affordable -- Chapter 6 A Comprehensive Assessment of the Chemical-Based Technologies for Waste(Water) Treatment -- 6.1 Introduction -- 6.2 Overview of Chemical Treatment Technologies -- 6.2.1 Water Treatment Processes Based on Chemical Technology -- 6.2.1.1 Chemical Precipitation (Coagulation and Flocculation) -- 6.2.1.2 Disinfection -- 6.2.1.3 Adsorption -- 6.2.1.4 Advanced Oxidation Processes (AOPs) -- 6.2.1.5 Ion Exchange Water Treatment Process -- 6.3 Advantages of Chemical Technology Treatment Processes over Biological Processes -- 6.3.1 Limitations and Challenges -- 6.4 Overview on Technical Expertise -- 6.4.1 Technical Expertise Required in Chemical Technology Water Treatment Process -- 6.4.1.1 Expertise in Chemical Process Design -- 6.4.1.2 Expertise in Chemical Process Operation -- 6.4.1.3 Expertise in Chemical Process Optimization -- 6.4.1.4 Technical Expertise in Understanding Chemical Reactions, Kinetics, and Thermodynamics -- 6.5 Overview on Equipment and Machinery -- 6.5.1 Equipment and Machinery in Chemical Technology Processes for Water Treatment -- 6.5.1.1 Pumps -- 6.5.1.2 Mixers -- 6.5.1.3 Reactors -- 6.5.1.4 Filters -- 6.5.1.5 Disinfection Systems -- 6.5.2 Integration of Equipment and Machinery -- 6.6 Overview Recent Chemical Materials Used in Wastewater Treatment Plants -- 6.6.1 Recent Chemical Materials Used in Wastewater Treatment Plants -- 6.6.1.1 Coagulants and Flocculants for Solid-Liquid Separation -- 6.6.1.2 Advanced Oxidation Processes (AOPs) Utilizing Ozone and Hydrogen Peroxide -- 6.6.1.3 Adsorbents and Ion Exchange Resins for Contaminant Removal -- 6.6.1.4 Advancements in Disinfectants for Microbial Control -- 6.7 Conclusions.
Acknowledgment.
Record Nr. UNINA-9911019916803321
Fosso-Kankeu Elvis  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recovery of Values from Low-Grade and Complex Minerals : Development of Sustainable Processes
Recovery of Values from Low-Grade and Complex Minerals : Development of Sustainable Processes
Autore Fosso-Kankeu Elvis
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (273 pages)
Disciplina 622.7
Altri autori (Persone) MambaBhekie B
Mulaba-BafubiandiAntoine F
Soggetto topico Ore-dressing
Sustainability
ISBN 9781119896890
1119896894
9781119896883
1119896886
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Optimization of the Mechanical Comminution - The Crushing Stage -- 1.1 Introduction -- 1.2 The Role of Crushers -- 1.2.1 Types of Crushers and Their Effect -- 1.2.1.1 Jaw Crusher -- 1.2.1.2 Gyratory Crusher -- 1.2.1.3 Impact Crusher -- 1.2.1.4 Cone Crusher -- 1.2.1.5 HPGR Crusher -- 1.2.2 Gaps and Future Perspective -- 1.3 Conclusion -- References -- Chapter 2 Challenges Related to the Flotation Process of Complex Phosphate Ores -- Abbreviations -- 2.1 Introduction to the Geology of Complex Phosphate Ores -- 2.2 Phosphate Rock Beneficiation Processes -- 2.2.1 Principal and Sub-Ordinate Minerals (Ore Mineralogy) -- 2.3 Froth Flotation of Sedimentary Phosphate Ore -- 2.3.1 Collectors Used in Phosphate Rock Flotation -- 2.3.2 Depressants Used in Phosphate Rock Flotation -- 2.3.3 Frothers Used in Phosphate Rock Flotation -- 2.3.4 Effect of pH on Flotation of Phosphate Ores -- 2.3.5 Equipment Used in Phosphate Rock Flotation -- 2.4 Challenges Facing Flotation of Phosphate Rock -- 2.4.1 Water Quality -- 2.4.2 Mineralogy of the Phosphate Rock -- 2.4.3 Particle Size Distribution Challenges -- 2.5 Future Research Directions -- 2.6 Conclusion -- References -- Chapter 3 Increasing Ionic Strength and Oxyhydroxo Species in Process Water on the Floatability of Chalcopyrite and Pentlandite for a Selected Cu-Ni Bearing Ore Flotation -- 3.1 Introduction -- 3.2 Materials and Methods -- 3.2.1 Three-Phase Batch Flotation -- 3.2.2 Two-Phase Batch Flotation -- 3.2.3 Two-Phase Froth Column -- 3.3 Results and Discussion -- 3.3.1 Solids and Water Recoveries from a Three-Phase Batch Cell -- 3.2 Cu and Ni Recoveries and Grades from a Three-Phase Batch Cell -- 3.3 Water Recoveries from a Two-Phase Batch Float Cell -- 3.4 Froth Column Studies from a Two-Froth Column -- Conclusions -- Acknowledgments.
References -- Chapter 4 Relating the Flotation Response of Pyrrhotite to the Adsorption of Sodium Carboxymethyl Cellulose and Sodium Isobutyl Xanthate on its Surface in Process Water of a Degrading Quality -- 4.1 Introduction -- 4.2 Experimental Methods -- 4.2.1 Synthetic Plant Water Preparation -- 4.2.2 Collector Preparation -- 4.2.3 Depressant Preparation -- 4.2.4 Ore Preparation and Milling -- 4.2.5 Batch Flotation -- 4.2.6 Sample Assays/Analyses -- 4.2.7 Pyrrhotite Sample Preparation -- 4.2.8 Bubble-Particle Attachment -- 4.2.9 Microflotation Tests -- 4.2.10 Zeta Potential Measurements -- 4.2.11 Adsorption of Sodium Isobutyl Xanthate -- 4.2.12 Adsorption of Sodium Carboxymethyl Cellulose -- 4.3 Results and Discussion -- 4.3.1 Batch Flotation of a Cu-Ni-PGM Ore: Effect of the Ionic Strength of SPW and CMC Dosage on the Behavior of Pyrrhotite -- 4.3.2 Microflotation of Pyrrhotite in Increasing Ionic Strength of SPW and CMC Dosage -- 4.3.3 Bubble-Particle Attachment of Pyrrhotite in Increasing Ionic Strength of SPW -- 4.3.4 Adsorption of Sodium Isobutyl Xanthate onto Pyrrhotite in Increasing Ionic Strength of SPW -- 4.3.5 Adsorption of Carboxy Methyl Cellulose onto Pyrrhotite in Increasing Ionic Strength of SPW -- 4.3.6 Zeta Potential of Pyrrhotite in Increasing Ionic Strength of SPW -- 4.3.7 Concluding Discussion -- 4.4 Conclusions -- Acknowledgments -- References -- Chapter 5 Simulated Short Cycle Water Recirculation on the Flotation Performance of a UG2 Cu-Ni-PGM Ore -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 UG2 Ore Mineralogy -- 5.2.2 Plant Water Preparation -- 5.2.3 Reagents Preparation, Storage, and Disposal -- 5.2.3.1 Collector -- 5.2.3.2 Depressant -- 5.2.3.3 Frother -- 5.2.4 Comminution of the UG2 Ore -- 5.2.5 Batch Flotation Procedure -- 5.2.6 Determination of the Entrainment Factor and Gangue Recovery by Entrainment.
5.2.7 Simulating Short Water Recirculation -- 5.2.8 XRF Analysis of Solids Samples -- 5.2.9 Thermo Scientific Gallery Discrete Automated Photometric (Colorimetric) Analyser (GDAPA) -- 5.3 Results and Discussion -- 5.3.1 Solids and Water Recoveries -- 5.3.2 Copper and Nickel Recoveries and Grades -- 5.3.3 Relating the Water Quality Results from GDAPA to Flotation Performance -- 5.4 Conclusions -- Acknowledgements -- References -- Chapter 6 Complexity of Chalcopyrite Mineral Affecting Copper Recovery During Leaching -- 6.1 Introduction -- 6.2 CuFeS2 Crystal Structure -- 6.3 Application of Dissolution/Leaching of Chalcopyrite -- 6.4 Challenges Associated with Copper Dissolution from the Chalcopyrite Mineral -- 6.4.1 Elemental Sulfur -- 6.4.2 Iron Precipitates -- 6.4.3 Fe-Deficient Polysulfide -- 6.4.4 Gangue-Related Mineral -- 6.5 H2SO4-Fe2(SO4)3-FeSO4-H2O Speciation -- 6.6 Parameters Affecting Dissolution -- 6.6.1 Effect of pH -- 6.6.2 Effect of Size Particle -- 6.6.3 Effect of Concentration -- 6.6.4 Effect of Temperature -- 6.6.5 Effect of Potential -- 6.6.6 Effect of Geology of the Host Ore Body -- 6.6.7 Effect of Additives -- 6.6.7.1 Addition of Silver (Ag+) -- 6.6.7.2 Addition of Chloride (Cl-) -- 6.7 Thermodynamic Considerations -- 6.8 CuFeS2 Phases Conversion/Copper Sulfide (Cu-S) Intermediate Phases -- 6.8.1 Alternative Ways of CuFeS2 Dissolution -- 6.8.2 Development in the Field of Copper Sulfide Mineral Leaching -- 6.9 Conclusion -- References -- Chapter 7 Fe3+-Fe2+ Redox Cycle Peculiarity in the Acid Dissolution of Copper-Cobalt Complex Ores -- 7.1 Introduction -- 7.2 Conventional Leaching of Copper-Cobalt Minerals -- 7.2.1 Minerals Found in Copper-Cobalt Ores -- 7.2.1.1 Location of the African Copperbelt -- 7.2.1.2 Geology of the Katanguian -- 7.2.2 Thermodynamics of the Cu and Co Bearing Mineral Dissolution.
7.2.2.1 Potential-pH Diagram of the Cu-H2O System at 25°C -- 7.2.2.2 Potential-pH Diagram of the Co-H2O System at 25°C -- 7.2.2.3 Leaching Reactions -- 7.2.3 Leaching of Oxidized Copper Minerals -- 7.2.4 Leaching of Cobalt Oxidized Minerals -- 7.2.4.1 Reaction Chemistry -- 7.2.4.2 Discussions on the Reducing Agents of Co(III) -- 7.2.4.3 Environmental Aspects Related to the Use of Reagents that Generate SO2 -- 7.2.4.4 Experimental Data on Co(III) Reduction -- 7.2.4.5 Microwave Assisted Acid Leaching of Cobalt (III) -- 7.2.5 Leaching of Sulfide Minerals -- 7.3 Fe3+-Fe2+ Redox Cycle in the Dissolution of Mixed Oxidized and Sulfide Minerals -- 7.3.1 Oxidation by Dissolved Oxygen -- 7.3.2 Oxidation by Fe3+ -- 7.3.3 Towards a New "Mineral-Mineral" Process -- 7.4 Application of Mineral-Mineral Leaching Process to the Dissolution of Complex Ores -- 7.4.1 Reaction Mechanism -- 7.4.2 Redox Test Results of the CuFeS2-Fe3O4-Co2O3 System -- 7.4.3 Results of Leaching Tests of the CuFeS2-Fe3O4- Co2O3 System with Temperature Variation -- 7.4.4 Discussions -- 7.5 Conclusion -- References -- Chapter 8 Rare Earth Elements (REEs) in Complex Ores and Spent Materials: Processing Technologies and Relevance in the Global Energy Transition -- 8.1 Introduction -- 8.2 The Chemistry of REEs -- 8.3 REE Minerals and Deposit Types -- 8.4 REE Ore Mining and Processing Technologies -- 8.4.1 Mineral Beneficiation for Recovery of REEs -- 8.4.1.1 Recovery of REEs Using Gravity, Magnetic, and Electrostatic Separation -- 8.4.1.2 Recovery of REEs from Monazite Using Flotation -- 8.4.2 Hydrometallurgical Approach for Processing REEs -- 8.4.2.1 Recovery of REEs from Phosphogypsum -- 8.4.2.2 Recovery of REEs from Apatite Mineral -- 8.4.2.3 Recovery of REEs from Red Mud -- 8.4.2.4 Recovery of REEs from Calcium Sulfate Sludge -- 8.4.2.5 Recovery of REEs from NdFeB Magnet.
8.4.3 Pyrometallurgical Approach for Processing of REEs -- 8.4.4 Integrated Pyrometallurgical and Hydrometallurgical Approach for Processing of REEs -- 8.4.4.1 Recovery of REEs from Monazite, Xenotime and Bastnaesite -- 8.4.4.2 Recovery of REEs Using Alkaline Treatment -- 8.4.5 Alternative Technology for Processing of REEs -- 8.4.5.1 Phytomining for Production of REEs -- 8.4.5.2 Solvometallurgy -- 8.5 Relevance of REEs in Energy Transition -- 8.6 Conclusion -- References -- Index -- Also of Interest -- EULA.
Record Nr. UNINA-9911019597303321
Fosso-Kankeu Elvis  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui