top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Application of nanoparticles in tissue engineering / / edited by Sarah Afaq, Arshi Malik, Mohammed Tarique
Application of nanoparticles in tissue engineering / / edited by Sarah Afaq, Arshi Malik, Mohammed Tarique
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (134 pages)
Disciplina 730
Soggetto topico Nanoparticles
Nanopartícules
Enginyeria de teixits
Soggetto genere / forma Llibres electrònics
ISBN 981-16-6198-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1: Nanoparticles for Tissue Engineering: Type, Properties, and Characterization -- 1.1 Introduction -- 1.2 History of Nanoparticles -- 1.3 Types of Nanoparticles -- 1.3.1 Organic Nanoparticles -- 1.3.1.1 Liposomes -- 1.3.1.2 Polymeric Nanoparticles -- 1.3.2 Dendrimers -- 1.3.3 Inorganic Nanoparticles -- 1.3.3.1 Silica Nanoparticles -- 1.3.3.2 Metallic Nanoparticles -- Gold Nanoparticle -- 1.3.4 Magnetic Nanoparticle -- 1.3.4.1 Bio-ceramics and Bioactive Glass Nanoparticles -- 1.3.4.2 Carbon Nanotubes -- 1.4 Physiochemical Properties of Nanoparticles -- 1.4.1 Electronic and Optical Properties -- 1.4.2 Mechanical Properties -- 1.4.3 Magnetic Properties -- 1.4.4 Thermal Properties -- 1.5 Characterization of Nanoparticles -- 1.5.1 Particle Size -- 1.5.2 Surface Charge -- 1.5.3 Hydrophobicity -- 1.5.4 Drug Release -- 1.6 Application of Nanoparticles -- 1.6.1 Biological Property Enhancement -- 1.6.2 Mechanical Property Enhancement -- 1.6.3 3D Tissue Construction -- 1.6.4 Antibacterial Applications -- 1.6.5 Cells Stimulation for Mechano-transduction -- 1.6.6 Gene Delivery -- 1.7 Challenges and Future Perspective -- 1.8 Conclusion -- References -- 2: Nanoparticles and Bioceramics Used in Hard Tissue Engineering -- 2.1 Introduction -- 2.2 Nanoparticles Used in Hard Tissue Engineering -- 2.2.1 Organic Nanoparticles -- 2.2.1.1 Liposomes -- 2.2.1.2 Polymeric Nanoparticles -- 2.2.2 Inorganic Nanoparticles -- 2.2.2.1 Silica NPs -- 2.2.2.2 Metallic NPs -- 2.2.2.3 Bioactive Glass -- 2.2.2.4 Carbon Nanotubes -- 2.2.2.5 Quantum Dots -- 2.3 Bioceramics Used in Tissue Engineering -- 2.3.1 Classification Based on Origin -- 2.3.2 Classification Based on Tissue Response -- 2.3.3 Classification Based on Composition -- 2.3.3.1 Zirconium-Based Bioceramics -- 2.3.3.2 Alumina-Based Bioceramics -- 2.3.3.3 Carbon-Based Bioceramics.
2.4 Properties of Nanoparticles and Bioceramic Materials -- 2.5 Current Challenges and Future Perspective -- 2.6 Conclusion -- References -- 3: Application of Nanoparticles in Soft Tissue Engineering -- 3.1 Introduction -- 3.2 Nanofibers for Soft Tissue Engineering -- 3.2.1 Nature-Derived Nanofibers -- 3.2.2 Synthetic Nanofibers -- 3.3 Inorganic Nanoparticles -- 3.3.1 Silver Nanoparticles -- 3.3.2 Gold Nanoparticles -- 3.3.3 Iron Nanoparticles -- 3.3.4 Aluminum Nanoparticles -- 3.3.5 Zinc Nanomaterial -- 3.3.6 Magnesium Nanoparticles -- 3.3.7 Titanium -- 3.4 Nanomaterial Applications in Specific Areas of Tissue Engineering -- 3.4.1 Application of Nanomaterials for Soft Tissue Engineering in Dentistry -- 3.4.2 Applications of Nanomaterials for Soft Tissue Engineering in Stem Cells -- 3.4.3 Application of Nanomaterials for Soft Tissue Engineering in Osteology -- 3.4.4 Application of Nanomaterials for Soft Tissue Engineering in Cardiac Muscles -- 3.4.5 Application of Nanomaterials for Soft Tissue Engineering in Neurology -- 3.5 Future Directions in Soft Tissue Engineering -- 3.6 Conclusion -- References -- 4: 3D and 4D Nanoprinting for Tissue Regeneration -- 4.1 Introduction -- 4.2 Bioprinting Techniques Using Biopolymers and Biomaterials -- 4.3 Advances in 3D and 4D Nanoprinting Methods -- 4.3.1 Traditional Methods of 3D Scaffold Synthesis -- 4.3.1.1 Gas Foaming -- 4.3.1.2 Freeze-Drying -- 4.3.1.3 Particle Leaching -- 4.3.1.4 Fiber Bonding -- 4.3.1.5 Phase Separation -- 4.3.2 Advanced Nanoprinting Methods for Scaffold Synthesis -- 4.3.2.1 Rapid Prototyping -- 4.3.2.2 Two-Photon Absorption -- 4.3.2.3 Controlled Electrospinning -- 4.3.2.4 Charged Aerosol Jet -- 4.4 Advances in Nanoprinting of Cells, Tissues, and Organs -- 4.4.1 Skin -- 4.4.2 Bone and Cartilage -- 4.4.3 Retina -- 4.4.4 Neural.
4.5 Major Challenges Influencing the Bio-nanoprinting for Tissue Engineering -- 4.5.1 Factors Influencing Bio-nanoprinting for Tissue Engineering -- 4.6 Future Perspectives -- References -- 5: Strategies to Improve Delivery of Bioactive Agents -- 5.1 Introduction -- 5.2 Strategies for Improving Delivery of Bioactive Agents -- 5.3 Improvements in Nanoparticles for Enhanced Permeability and Retention (EPR) Effects for Delivery of Bioactive Agents -- 5.3.1 Nanoparticle Improvements for Permeating Cell-Cell Barriers -- 5.3.2 Nanoparticle Improvements to Overcome Blood-Brain Barrier (BBB) -- 5.3.3 Nanoparticle Improvements to Overcome Macrophage-Mediated Immune Clearance -- 5.4 Strategic Improvement of Drug Delivery Systems -- 5.4.1 Liposome-Based Drug Delivery -- 5.4.2 Virosome-Based Drug Delivery -- 5.4.3 Solid Lipid Nanoparticles Based Drug Delivery -- 5.4.4 Dendrimer-Based Drug Delivery -- 5.4.5 Nano-emulsion-Based Drug Delivery -- 5.4.6 Mesoporous Silica Nanoparticles (MSNP) Based Drug Delivery -- 5.5 Conclusion -- References -- 6: Nanotechnology and Its Applications in Molecular Detection -- 6.1 Nanotechnology and Molecular Detection: Importance of Nanotechnology in Molecular Detection -- 6.2 Applications -- 6.2.1 Nanotechnology on a Chip -- 6.2.1.1 Microfluidic Chips for Nanolitre Volumes: Nanochip -- 6.2.1.2 Optical Readout of Nanoparticle Labels -- 6.2.1.3 Nanoarrays -- 6.2.1.4 Protein Nanoarrays -- 6.2.2 Nanoparticle Technology -- 6.2.2.1 Gold Particles -- Introduction -- Synthesis of AuNps -- Properties of AuNPs -- Applications of AuNPs -- 6.2.2.2 Nanoparticle Probes -- 6.2.2.3 Nanobarcodes -- 6.2.2.4 Magnetic Nanoparticles: Ferrofluid -- 6.2.2.5 Quantum Dot Technology -- 6.2.3 Other Nanoparticles -- 6.2.3.1 Nanowires -- 6.2.3.2 Cantilever Arrays -- 6.2.3.3 DNA Nanomachines for Molecular Detection -- 6.2.3.4 Nanopore Technology.
6.2.3.5 Nanosensors -- 6.2.3.6 Resonance Light Scattering (RLS) Technology -- 6.3 Conclusion -- References -- 7: Challenges and Future Prospect of Nanoparticles in Tissue Engineering -- 7.1 Nanobiomaterials and Tissue Engineering -- 7.2 Challenges with Nanoparticles for Biomaterials in Tissue Engineering -- 7.3 Bone Tissue Engineering -- 7.4 Orthopedic Implants -- 7.5 Challenges in Surface Modification of Orthopedic Implants Using Nanobiomaterials and Tissue Engineering -- 7.6 Nanobiomaterials for Orthopedic and Dental Implants -- 7.7 Nano-bioceramic Coating Methods for Tissue Engineering Applications -- 7.8 Future Aspects of Tissue Engineering -- References.
Record Nr. UNINA-9910595035303321
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanomedicine for cancer diagnosis and therapy / / Arshi Malik, Sarah Afaq and Mohammed Tarique (editors)
Nanomedicine for cancer diagnosis and therapy / / Arshi Malik, Sarah Afaq and Mohammed Tarique (editors)
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (251 pages)
Disciplina 616.994075
Soggetto topico Nanomedicine
Cancer - Treatment - Technological innovations
Nanomedicina
Oncologia
Terapèutica
Soggetto genere / forma Llibres electrònics
ISBN 981-15-7564-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- About the Editors -- 1: Nanoparticles for Cancer Therapy -- 1.1 Introduction -- 1.1.1 Cancer and its Types -- 1.1.2 Nanomedicine -- 1.2 Evolution of Cancer Therapy -- 1.2.1 Surgery and Adjuvant Therapies -- 1.2.2 Hormone Therapy -- 1.2.3 Immunotherapy -- 1.2.4 Cancer Therapy with Nanomedicine -- 1.3 Nanoparticles in Cancer Therapy -- 1.3.1 Protein Nanoparticles -- 1.3.2 Magnetic Nanoparticles -- 1.3.3 Inorganic Nanoparticles -- 1.3.4 Lipid Nanoparticles -- 1.3.5 Targeted Nanoparticles -- 1.3.6 Polymeric Nanoparticles -- 1.3.7 Multifunctional Nanoparticles -- 1.3.8 Quantum Dots -- 1.3.9 DNA Nanoparticles -- 1.4 Pharmacokinetics of Cancer Nanodrug Carriers -- 1.5 Cancer Nanomedical Research -- 1.5.1 Initial Advancements in Nanoparticle Research -- 1.5.2 Nanomedical Research Using Plant-Derived Compounds -- 1.5.3 Nanomedical Research Using Gene Therapeutic Strategies -- 1.5.4 Nanomedical Research Using In Vivo Imaging Techniques -- 1.5.5 Mainstream Research in the ``Golden Age´´ of Nanotechnology -- 1.5.6 Nanomedical Research Using Computational and Nanobioinformatic Tools -- 1.6 Nanomedicine in Cancer Diagnosis and Treatment -- 1.6.1 Immunoassays Using Nanomaterial-Embedded Microchips -- 1.6.2 In Vivo Imaging Using Nanoparticle Contrast Agents -- 1.6.3 Theranostic Nanomedicine -- 1.6.4 Cancer Nanodrug Release Systems and Personalized Cancer Nanomedicine -- 1.7 Current Research and Prospects -- 1.7.1 Smart Nanocarrier-Based Drug-Delivery Systems for Cancer Therapy -- 1.7.2 RNA Delivery Using Nanoparticles -- 1.7.3 Nanobots -- 1.8 Concluding Remarks -- References -- 2: Strategies for Improving the Efficiency of Nanomaterials -- 2.1 Introduction -- 2.2 Strategies for the Improvement of Nanomaterials -- 2.2.1 Photocatalytic Efficiency -- 2.2.2 Therapeutic Efficiency.
2.2.2.1 Strategic Improvement of Nanomaterials for Enhanced Permeability and Retention (EPR) Effects -- 2.2.2.2 Strategic Improvement of Nanomedicine for Improved Drug Delivery Systems -- Liposome Based Nanoformulation -- Nanoemulsions -- Solid Lipid Nanoparticles (SLN) -- Strategies for Organelles Specific Targeting of Nanodrugs -- Virus Based Nanoformulation -- 2.2.2.3 Photoactivated Nanomaterials for Photodynamic and Photothermal Therapy (PDT/PTT) -- 2.2.2.4 Mesoporous Silica Nanoparticles (MSNP) -- 2.2.2.5 Dendrimers -- 2.2.3 Engineering Nanoparticles to Evade the Multidrug Resistance (MDR) in Cancer -- 2.2.4 Nanoparticle-Based Combination Therapy -- 2.3 Conclusion -- References -- 3: Bioinspired Nanoparticles in Cancer Theranostics -- 3.1 Introduction -- 3.2 Novelty of Bioinspired Nanoparticles Based Theranostics -- 3.2.1 Liposomes in Cancer Theranostics -- 3.2.2 Lipid Nanoparticles in Cancer Theragnostic -- 3.2.2.1 Solid Lipid Nanoparticles (SLNs) -- 3.2.2.2 Nano-Structured Lipids (NLCs) -- 3.2.2.3 Lipid Nanocapsules (LNCs) -- 3.2.3 Protein-Based Nanoparticles for Cancer Theranostics -- 3.2.4 Virus like Nanoparticles in Cancer Theranostics -- 3.2.5 Inorganic and Bionanoparticles in Cancer Theranostics -- 3.3 Conclusions and Future Perspectives -- References -- 4: Nanomedicines for Solid Tumors: Current Status, Challenges, and Future Prospects -- 4.1 Introduction -- 4.2 Possible Factors that Initiate Cancer Growth -- 4.2.1 Age -- 4.2.2 Cancer Causing Elements -- 4.2.3 Immunosuppression -- 4.2.4 Infectious Agents -- 4.2.5 Radiation -- 4.3 Tumor Classification Based on Tissue of Origin -- 4.4 Existing Treatment Options Available for Cancer -- 4.5 Description of Solid Tumor -- 4.6 Nanomedicine -- 4.6.1 Unlocking Novel Cancer Applications Exploited in the Field of Nanomedicine -- 4.7 Fabrications of Nanocarrier for Drug Delivery.
4.8 Targeted Delivery of Nanocarrires to the Tumor Niche as Well as Solid Tumor -- 4.8.1 Drug Targeting Mechanisms and Surface Functionalization of Nanocarriers Aiding Nanomedicine Based Technologies in Solid ... -- 4.9 Nanoscience Based Imaging Technologies in the Detection of Solid Tumors -- 4.9.1 Photodynamic Nanomedicine in the Treatment of Solid Tumors -- 4.10 Nanomedicine and Solid Tumor Heterogenecity -- 4.11 Nanomedicine in Solid Tumors: PROS and CONS? -- 4.11.1 PROS -- 4.11.2 CONS -- 4.12 Discussion -- 4.13 Future Perspective -- References -- 5: Nanomaterials for Early Cancer Diagnostics -- 5.1 Introduction -- 5.2 Cancer and Biomarkers -- 5.2.1 Early Detection of Prostate Cancer -- 5.2.2 Early Detection of Breast Cancer -- 5.2.3 Early Detection of Lung Cancer -- 5.2.4 Early Detection of Liver Cancer -- 5.2.5 Early Detection of Oral Cancer -- 5.2.6 Early Detection of Pancreatic Cancer -- 5.2.7 Early Detection of Ovarian Cancer -- 5.2.8 Early Detection of Human Cervical Cancer -- 5.2.9 Early Detection of Bladder Cancer -- 5.2.10 Early Detection of Head and Neck Cancer -- 5.2.11 Early Detection of Colon Cancer -- 5.3 Conclusion -- References -- 6: Role of Nanomedicine for Cancer Immunotherapy -- 6.1 Introduction -- 6.2 Improving Cellular-Mediated Immunotherapy -- 6.2.1 Combining Therapeutic Agents to Immune Cells -- 6.2.2 Directing Therapeutic Drugs to Immune Cells -- 6.2.3 Delivery of Gene in Lymphocytes -- 6.3 Delivery Mechanism of Nanoparticle Therapeutics -- 6.3.1 Stimulating Immunogenic Cell Death (ICD) -- 6.3.1.1 Nanosized Drug Carriers -- 6.3.1.2 Nanopulse Stimulation -- 6.3.2 Enhanced Presentation of Ligands to Immune Cells -- 6.3.3 Chronological Regulation of Immunostimulation -- 6.4 Modulation in Pharmacokinetics of Immunotherapy Agents -- 6.5 Targeting Myeloid Cells -- 6.6 Targeting Stromal Cell in TME.
6.7 Limitations of Nanomedicines in Cancer Immunotherapy -- 6.8 Conclusion and Future Perspectives -- References -- 7: Targeting Tumor Microenvironment Through Nanotheranostics -- 7.1 Introduction -- 7.2 The Tumor Microenvironment (TME) and its Components -- 7.2.1 Cells of the Immune System -- 7.2.1.1 The T Cells -- 7.2.1.2 The B Cells -- 7.2.1.3 Tumor Associated Macrophages (TAMs) -- 7.2.1.4 Tumor Associated Neutrophils (TANs) -- 7.2.1.5 Natural Killer (NK) Cells -- 7.2.1.6 Cancer Associated Fibroblasts (CAFs) -- 7.2.2 The Extracellular Matrix (ECM) and Surrounding Cells -- 7.2.2.1 The Adipocytes -- 7.2.2.2 The Pericytes -- 7.2.2.3 Matrix Metalloproteases (MMPs) and Other Proteases -- 7.2.2.4 The Endothelial Cells -- 7.2.3 The TME, Inflammation, and Cancer -- 7.2.4 Hypoxia in the TME -- 7.3 The TME as an Attractive Therapeutic Target in Cancer -- 7.4 Cancer Nanotheranostic Agents that Target the TME -- 7.4.1 Metallic Nanoparticles (NPs) -- 7.4.2 Magnetic Nanoparticles (MNPs) -- 7.4.3 Mesoporous Silica Nanoparticles (MSiNPs) -- 7.4.4 Nano-Graphenes (NGs) -- 7.4.5 Polymeric-Based Nanotheranostic Particles (PNPs) -- 7.4.6 Lipid-Based Nanotheranostic Particles (LNPs) -- 7.4.7 Protein-Based Nanotheranostic Particles (PNPs) -- 7.4.8 Viral-Based Nanotheranostic Particles (VLPs) -- 7.4.9 DNA-Based Cancer Nanotheranostic Platform -- 7.5 Visualizing Cancer Through Nanotheranostics -- 7.5.1 Magnetic Resonance Imaging (MRI) -- 7.5.2 Photoacoustic Imaging (PAI) -- 7.5.3 Optical Imaging -- 7.5.4 Nuclear Imaging -- 7.6 Nanotheranostics for the Detection of Cancer Biomarkers -- 7.6.1 Labeling Nanoparticles with Conjugates -- 7.6.1.1 Chemical Crosslinking -- 7.6.1.2 Biotin/Avidin Conjugation -- 7.6.1.3 Click Chemistry -- 7.6.2 Target Moieties for Identification of Cancer Biomarkers -- 7.7 Conclusion and Future Direction -- References.
8: Therapeutic Applications of Noble Metal (Au, Ag, Pt)-Based Nanomedicines for Melanoma -- 8.1 Introduction -- 8.1.1 Melanoma -- 8.1.1.1 Global Statistics and Market -- 8.1.1.2 Treatment Strategies -- 8.1.2 Nanotechnology in Melanoma -- 8.1.2.1 Nanoparticles for Melanoma -- 8.1.2.2 PAMAM -- 8.1.2.3 Zinc Oxide Nanoparticle -- 8.1.2.4 Titanium Dioxide Nanoparticle -- 8.1.2.5 Vanadium Pentoxide Nanoparticle -- 8.1.2.6 Copper Prussian Blue Nanoparticle -- 8.2 Importance of Noble Metal Nanoparticles in Biomedicine -- 8.3 Role of Noble Metals (Au, Ag, Pt) in Treatment of Melanoma -- 8.3.1 Gold (Au) Nanoparticles -- 8.3.1.1 Drug Delivery -- 8.3.1.2 Gene Delivery and Immunotherapy -- 8.3.1.3 Biosynthesized Gold Nanoparticles -- 8.3.1.4 Imaging -- 8.3.1.5 Photothermal and Photodynamic Therapy -- 8.3.2 Silver (Ag) Nanoparticles -- 8.3.3 Platinum (Pt) Nanoparticles -- 8.4 Toxicity of Noble Metal Nanoparticles -- 8.5 Challenges and Future Perspectives -- 8.6 Conclusion -- References -- 9: Ethics in Nanomedicine -- 9.1 Introduction -- 9.2 Nanomedicine -- 9.3 Difference Between Nanotechnology and Nanomedicine -- 9.4 Hype Versus Reality of Nanomedicine -- 9.5 Nondiscrimination and Integrity of Nanomedicine -- 9.6 The Potentiality of Nanomedicine -- 9.7 Biocompatibility and Toxicity of Nanostructures -- 9.8 Demand of the Nanomedicine in Market -- 9.9 Nanomedicine and Ethical Concerns -- 9.9.1 Ethical Problems Associated with Translational Research Involving Nanomedicine -- 9.9.2 Ethical Problems in Personalized and Regenerative Therapy with Nanomedicine -- 9.9.3 Ethical Concerns of Medical Surveillance -- 9.9.4 Ethical Challenges Inherent to Nanomedicine Applications -- 9.9.5 Social Ethics in Public Health Systems -- 9.9.5.1 Impact of Nanotechnology in Developing Nations -- 9.9.5.2 Impact of Nanotechnology on Laborers and Managerial Issues.
9.10 Future Perspectives.
Record Nr. UNINA-9910488707403321
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui