Curvilinear micromagnetism : from fundamentals to applications / / Denys Makarov, Denis D. Sheka, editors
| Curvilinear micromagnetism : from fundamentals to applications / / Denys Makarov, Denis D. Sheka, editors |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (420 pages) |
| Disciplina | 510 |
| Collana | Topics in applied physics |
| Soggetto topico |
Curves
Magnetism |
| ISBN | 3-031-09086-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- References -- Contents -- Contributors -- 1 Geometry-Induced Magnetic Effects in Planar Curvilinear Nanosystems -- 1.1 Introduction -- 1.2 Model of Curved 1D Ferromagnetic Systems -- 1.3 Curvature-Induced Effects in Flat Magnetic Systems -- 1.3.1 Wire with a Constant Curvature-Ring-Shaped Wire -- 1.3.2 Wire with a Box-Function Curvature -- 1.3.3 Wire with Periodical Curvature Distribution -- 1.4 Domain Walls in Curved Ferromagnetic Wires -- 1.4.1 Statics of the Domain Wall -- 1.4.2 Dynamics of the Domain Wall -- 1.4.3 Domain Wall Depinning Experiments -- 1.5 Fabrication and Characterization -- 1.5.1 Lithographic Methods -- 1.5.2 Ion-Induced Methods -- 1.5.3 Magnetic Characterization -- 1.6 Conclusion and Outlook -- References -- 2 Effects of Curvature and Torsion on Magnetic Nanowires -- 2.1 Introduction -- 2.2 Geometry of Space Curves -- 2.3 Model of a Curvilinear Ferromagnetic Wire in 3D Space -- 2.3.1 Wires with a Circular Cross-Section -- 2.3.2 Narrow Ribbons -- 2.4 Implications -- 2.4.1 Ground States -- 2.4.2 Linear Dynamics -- 2.4.3 Curvilinear Wires for Spintronics and Spin-Orbitronics Applications -- 2.4.4 Artificial Magnetoelectric Materials -- 2.5 Curvilinear Antiferromagnetic Spin Chains -- 2.5.1 Micromagnetic Description of a Spin Chain -- 2.5.2 Geometry-Driven Biaxial Chiral Helimagnets -- 2.5.3 Interplay Between Anisotropy and Geometry -- 2.5.4 Geometry-Induced Weak Ferromagnetism -- 2.6 Experimental Studies -- 2.6.1 Fabrication -- 2.6.2 Characterization -- 2.7 Concluding Remarks and Outlook -- References -- 3 Curvilinear Magnetic Shells -- 3.1 Introduction -- 3.2 Fundamentals of Curvilinear Magnetism of Shells -- 3.2.1 Lexicon of Differential Geometry of Surfaces -- 3.2.2 Magnetic Energy of Curvilinear Shells -- 3.2.3 Emergent Interactions: Symmetry, Curvature and Textures -- 3.3 Curvature-Induced Effects.
3.3.1 Topological Patterning -- 3.3.2 Geometrical Magnetochiral Effects -- 3.4 Manipulation of Topologically Protected Magnetic States in Curved Shells -- 3.4.1 Skyrmions in Curvilinear Shells Engineered by Mesoscale DMI -- 3.4.2 Magnetic Vortex on a Spherical Cap: Polarity-Circulation Coupling -- 3.4.3 Control of the Magnetochiral Effects by Magnetic Fields -- 3.4.4 Dynamics of Topological Textures in Curved Films -- 3.5 Experimental Platforms -- 3.5.1 Hollow Nanoshells: A New Playground for Curvilinear Magnetism -- 3.5.2 Nanosphere Lithography: A Versatile Tool for Manufacturing Spherically Shaped Magnetic Nanostructures -- 3.5.3 Ion-Induced Surface Nanopatterning: Bottom-Up Templates for Curvilinear Magnetic Shells -- 3.6 Conclusion and Outlook -- References -- 4 Tubular Geometries -- 4.1 Introduction -- 4.2 Statics Properties of Tubular Nanomagnets -- 4.2.1 Magnetic Configurations at Equilibrium -- 4.2.2 Fabrication of Magnetic Tubular Geometries -- 4.2.3 Magnetization Reversal Process -- 4.3 Dynamical Properties -- 4.3.1 Chiral Domain Wall Motion -- 4.3.2 Vortex Domain Wall Dynamics-General Remarks -- 4.4 Spin wave Propagation -- 4.4.1 Theory of Spin Waves in Magnetic Nanotubes -- 4.5 Summary and Outlook -- References -- 5 Complex-Shaped 3D Nanoarchitectures for Magnetism and Superconductivity -- 5.1 Theoretical Background -- 5.2 Methods of Fabrication of 3D Nanoarchitectures -- 5.3 3D Magnetic Nanoarchitectures Fabricated by Optical Writing -- 5.4 3D Magnetic Nanoarchitectures Fabricated by FEBID -- 5.4.1 Basics and 3D Writing Aspects of FEBID -- 5.4.2 3D Magnetic Wireframe Building Blocks -- 5.4.3 3D Magnetic Nanoarchitectures -- 5.4.4 Complex-Shaped 3D Nanoarchitectures for Plasmonics and Beyond -- 5.5 3D Nanoarchitectures for Superconductivity -- References -- 6 Imaging of Curved Magnetic Architectures -- 6.1 Introduction. 6.2 Overview of Microscopy Approaches to Image Curved Magnetic Architectures -- 6.2.1 Magneto-Optical Microscopies -- 6.2.2 X-Ray Microscopies -- 6.2.3 Electron Microscopies -- 6.2.4 Neutron Microscopies -- 6.2.5 Scanning Probe Microscopies -- 6.3 Future Directions-Challenges and Opportunities -- References -- 7 Curvilinear Magnetic Architectures for Biomedical Engineering -- 7.1 General Overview of the Field: Magnetic Micro/Nanomotors -- 7.2 The Role of Asymmetry in the Generation of Motion -- 7.2.1 Scallop Theorem -- 7.2.2 Asymmetry of the Micro/Nanomotors -- 7.2.3 Symmetry Breaking to Get Deterministic Motion of the Micro-/Nanomotors -- 7.3 Major Applications for the Life Sciences and Environment -- 7.3.1 Environmental and Bio Remediation -- 7.3.2 Biosensing -- 7.3.3 Drug Delivery -- References -- 8 Magnetic Soft Actuators: Magnetic Soft Robots from Macro- to Nanoscale -- 8.1 Introduction -- 8.2 Mechanics of Magnetic Soft Robots -- 8.2.1 Mechanisms of Actuation -- 8.2.2 Relevant Torques -- 8.2.3 Range of Motion -- 8.2.4 Available Force -- 8.2.5 Available Work -- 8.3 Magnetostatic Energy of Thin Films -- 8.4 Magnetoelastic Systems at the Nanoscale -- 8.4.1 Nanoscale Flexible One-Dimensional Wires -- 8.4.2 Nanoscale Flexible Ribbons -- 8.5 Concluding Remarks -- References -- 9 Geometrically Curved Magnetic Field Sensors for Interactive Electronics -- 9.1 Introduction -- 9.2 Background -- 9.2.1 Interactive Devices, Human-Machine Interfaces, and Virtual Reality -- 9.2.2 Soft Human-Machine Interfaces and Magnetosensitive E-Skins -- 9.2.3 Flexible Electronics and E-Skins -- 9.3 Magnetosensitive E-Skins with Directional Perception -- 9.4 Geomagnetosensitive E-Skins -- 9.5 On-Site Conditioned Magnetosensitive E-Skins -- 9.6 Magnetosensitive E-Skins with Multimodal Capabilities. 9.7 Magnetosensitive E-Skins with Intrinsic Logic and Out-of-Plane Detection -- 9.8 Magnetic Soft Actuators with Embedded Flexible E-Skin Sensing Modules -- 9.9 Summary -- 9.10 Outlook -- References -- Index. |
| Record Nr. | UNISA-996499864903316 |
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Curvilinear micromagnetism : from fundamentals to applications / / Denys Makarov, Denis D. Sheka, editors
| Curvilinear micromagnetism : from fundamentals to applications / / Denys Makarov, Denis D. Sheka, editors |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (420 pages) |
| Disciplina | 510 |
| Collana | Topics in applied physics |
| Soggetto topico |
Curves
Magnetism |
| ISBN | 3-031-09086-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- References -- Contents -- Contributors -- 1 Geometry-Induced Magnetic Effects in Planar Curvilinear Nanosystems -- 1.1 Introduction -- 1.2 Model of Curved 1D Ferromagnetic Systems -- 1.3 Curvature-Induced Effects in Flat Magnetic Systems -- 1.3.1 Wire with a Constant Curvature-Ring-Shaped Wire -- 1.3.2 Wire with a Box-Function Curvature -- 1.3.3 Wire with Periodical Curvature Distribution -- 1.4 Domain Walls in Curved Ferromagnetic Wires -- 1.4.1 Statics of the Domain Wall -- 1.4.2 Dynamics of the Domain Wall -- 1.4.3 Domain Wall Depinning Experiments -- 1.5 Fabrication and Characterization -- 1.5.1 Lithographic Methods -- 1.5.2 Ion-Induced Methods -- 1.5.3 Magnetic Characterization -- 1.6 Conclusion and Outlook -- References -- 2 Effects of Curvature and Torsion on Magnetic Nanowires -- 2.1 Introduction -- 2.2 Geometry of Space Curves -- 2.3 Model of a Curvilinear Ferromagnetic Wire in 3D Space -- 2.3.1 Wires with a Circular Cross-Section -- 2.3.2 Narrow Ribbons -- 2.4 Implications -- 2.4.1 Ground States -- 2.4.2 Linear Dynamics -- 2.4.3 Curvilinear Wires for Spintronics and Spin-Orbitronics Applications -- 2.4.4 Artificial Magnetoelectric Materials -- 2.5 Curvilinear Antiferromagnetic Spin Chains -- 2.5.1 Micromagnetic Description of a Spin Chain -- 2.5.2 Geometry-Driven Biaxial Chiral Helimagnets -- 2.5.3 Interplay Between Anisotropy and Geometry -- 2.5.4 Geometry-Induced Weak Ferromagnetism -- 2.6 Experimental Studies -- 2.6.1 Fabrication -- 2.6.2 Characterization -- 2.7 Concluding Remarks and Outlook -- References -- 3 Curvilinear Magnetic Shells -- 3.1 Introduction -- 3.2 Fundamentals of Curvilinear Magnetism of Shells -- 3.2.1 Lexicon of Differential Geometry of Surfaces -- 3.2.2 Magnetic Energy of Curvilinear Shells -- 3.2.3 Emergent Interactions: Symmetry, Curvature and Textures -- 3.3 Curvature-Induced Effects.
3.3.1 Topological Patterning -- 3.3.2 Geometrical Magnetochiral Effects -- 3.4 Manipulation of Topologically Protected Magnetic States in Curved Shells -- 3.4.1 Skyrmions in Curvilinear Shells Engineered by Mesoscale DMI -- 3.4.2 Magnetic Vortex on a Spherical Cap: Polarity-Circulation Coupling -- 3.4.3 Control of the Magnetochiral Effects by Magnetic Fields -- 3.4.4 Dynamics of Topological Textures in Curved Films -- 3.5 Experimental Platforms -- 3.5.1 Hollow Nanoshells: A New Playground for Curvilinear Magnetism -- 3.5.2 Nanosphere Lithography: A Versatile Tool for Manufacturing Spherically Shaped Magnetic Nanostructures -- 3.5.3 Ion-Induced Surface Nanopatterning: Bottom-Up Templates for Curvilinear Magnetic Shells -- 3.6 Conclusion and Outlook -- References -- 4 Tubular Geometries -- 4.1 Introduction -- 4.2 Statics Properties of Tubular Nanomagnets -- 4.2.1 Magnetic Configurations at Equilibrium -- 4.2.2 Fabrication of Magnetic Tubular Geometries -- 4.2.3 Magnetization Reversal Process -- 4.3 Dynamical Properties -- 4.3.1 Chiral Domain Wall Motion -- 4.3.2 Vortex Domain Wall Dynamics-General Remarks -- 4.4 Spin wave Propagation -- 4.4.1 Theory of Spin Waves in Magnetic Nanotubes -- 4.5 Summary and Outlook -- References -- 5 Complex-Shaped 3D Nanoarchitectures for Magnetism and Superconductivity -- 5.1 Theoretical Background -- 5.2 Methods of Fabrication of 3D Nanoarchitectures -- 5.3 3D Magnetic Nanoarchitectures Fabricated by Optical Writing -- 5.4 3D Magnetic Nanoarchitectures Fabricated by FEBID -- 5.4.1 Basics and 3D Writing Aspects of FEBID -- 5.4.2 3D Magnetic Wireframe Building Blocks -- 5.4.3 3D Magnetic Nanoarchitectures -- 5.4.4 Complex-Shaped 3D Nanoarchitectures for Plasmonics and Beyond -- 5.5 3D Nanoarchitectures for Superconductivity -- References -- 6 Imaging of Curved Magnetic Architectures -- 6.1 Introduction. 6.2 Overview of Microscopy Approaches to Image Curved Magnetic Architectures -- 6.2.1 Magneto-Optical Microscopies -- 6.2.2 X-Ray Microscopies -- 6.2.3 Electron Microscopies -- 6.2.4 Neutron Microscopies -- 6.2.5 Scanning Probe Microscopies -- 6.3 Future Directions-Challenges and Opportunities -- References -- 7 Curvilinear Magnetic Architectures for Biomedical Engineering -- 7.1 General Overview of the Field: Magnetic Micro/Nanomotors -- 7.2 The Role of Asymmetry in the Generation of Motion -- 7.2.1 Scallop Theorem -- 7.2.2 Asymmetry of the Micro/Nanomotors -- 7.2.3 Symmetry Breaking to Get Deterministic Motion of the Micro-/Nanomotors -- 7.3 Major Applications for the Life Sciences and Environment -- 7.3.1 Environmental and Bio Remediation -- 7.3.2 Biosensing -- 7.3.3 Drug Delivery -- References -- 8 Magnetic Soft Actuators: Magnetic Soft Robots from Macro- to Nanoscale -- 8.1 Introduction -- 8.2 Mechanics of Magnetic Soft Robots -- 8.2.1 Mechanisms of Actuation -- 8.2.2 Relevant Torques -- 8.2.3 Range of Motion -- 8.2.4 Available Force -- 8.2.5 Available Work -- 8.3 Magnetostatic Energy of Thin Films -- 8.4 Magnetoelastic Systems at the Nanoscale -- 8.4.1 Nanoscale Flexible One-Dimensional Wires -- 8.4.2 Nanoscale Flexible Ribbons -- 8.5 Concluding Remarks -- References -- 9 Geometrically Curved Magnetic Field Sensors for Interactive Electronics -- 9.1 Introduction -- 9.2 Background -- 9.2.1 Interactive Devices, Human-Machine Interfaces, and Virtual Reality -- 9.2.2 Soft Human-Machine Interfaces and Magnetosensitive E-Skins -- 9.2.3 Flexible Electronics and E-Skins -- 9.3 Magnetosensitive E-Skins with Directional Perception -- 9.4 Geomagnetosensitive E-Skins -- 9.5 On-Site Conditioned Magnetosensitive E-Skins -- 9.6 Magnetosensitive E-Skins with Multimodal Capabilities. 9.7 Magnetosensitive E-Skins with Intrinsic Logic and Out-of-Plane Detection -- 9.8 Magnetic Soft Actuators with Embedded Flexible E-Skin Sensing Modules -- 9.9 Summary -- 9.10 Outlook -- References -- Index. |
| Record Nr. | UNINA-9910624317103321 |
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Functional Magnetic and Spintronic Nanomaterials / / edited by Igor Vladymyrskyi, Burkard Hillebrands, Alexander Serha, Denys Makarov, Oleksandr Prokopenko
| Functional Magnetic and Spintronic Nanomaterials / / edited by Igor Vladymyrskyi, Burkard Hillebrands, Alexander Serha, Denys Makarov, Oleksandr Prokopenko |
| Autore | Vladymyrskyi Igor |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (224 pages) |
| Disciplina |
530.12
003.54 |
| Altri autori (Persone) |
HillebrandsBurkard
SerhaAlexander MakarovDenys ProkopenkoOleksandr |
| Collana | NATO Science for Peace and Security Series B: Physics and Biophysics |
| Soggetto topico |
Quantum computing
Spintronics Magnetism Quantum Information |
| ISBN | 94-024-2254-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Influence of strong electron–electron correlations on the electrical conduction and magnetic properties of substitutional alloys as advanced functional spintronic material (V.V. Lizunov, I.M. Melnyk, T.M. Radchenko, S.P. Repetsky, V.A. Tatarenko – G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, Kyiv, Ukraine) -- 2. Engineered nanocolumnar magnetic films (María Garrido-Segovia, Lidia Martínez, Yves Huttel, Sašo Gyergyek, Ana Espinosa, Elena Navarro and José Miguel García-Martín – Departamento de Física de Materiales, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Micro y Nanotecnología, Madrid, Spain; Instituto de Magnetismo Aplicado, Madrid, Spain; Instituto de Ciencia de Materiales de Madrid, Madrid, Spain; Department for Materials Synthesis, Jožef Stefan Institute, Ljubljana, Slovenia) -- 3. Mn-based perpendicular magnetic tunnel junctions (Andreas Kaidatzis – Institute of Nanoscience and Nanotechnology, N.C.S.R. “Demokritos”, Athens, Greece) -- 4. Longitudinal evolution of the magnetization in nanostructure (Ivan A. Yastremsky – Taras Shevchenko National University of Kyiv, Kyiv, Ukraine) -- 5. Controlling multimagnon interaction in magnetic nanodots and spintronic nanostructures (Roman Verba, Julia Kharlan, Vladyslav Borynskyi, Denys Slobodianiuk, Arezoo Etesamirad and Igor Barsukov – Institute of Magnetism, Kyiv, Ukraine; Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland; Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; Physics and Astronomy, University of California, Riverside, California, USA) -- 6. Domain wall automotion by cross section tailoring in ferromagnetic nanostripes (Dmytro Karakuts, Kostiantyn V. Yershov, Denis D. Sheka – Taras Shevchenko National University of Kyiv Kyiv, Ukraine; Leibniz-Institut fur Festkorper- und Werkstoffforschung, IFW Dresden, Dresden, Germany) -- 7. Supercritical propagation of nonlinear spin wave through an antiferromagnetic magnonic crystal (Oksana Yu. Gorobets, Volodymyr V. Kulish, Ihor A. Syzon, Daryna V. Provolovska – National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine) -- 8. Energy conversion and energy harvesting in spin diodes (Ivan Fantych, Volodymyr Prokopenko, Oleksandr Prokopenko – Taras Shevchenko National University of Kyiv, Kyiv, Ukraine) -- 9. Magnetic nanocomponents for frequency converting in quantum computing technologies (A.A. Girich, S.V. Nedukh, S.Yu. Polevoy, B. Rami, K.Yu. Sova, S.I. Tarapov, A.S. Vakula – O.Ya. Usikov Institute for Radiophysics and Electronics of the N.A.S. of Ukraine, Kharkiv, Ukraine; Gebze Technical University, Gebze, Turkey) -- 10. Hybrid quantum systems for quantum transduction based on magnonic materials (S. Kazan, N.G. Saribas, M. Maksutoglu, S.Ç. Yorulmaz, E. Avinca, F. Yıldız, S.I. Tarapov, B. Rami – O.Ya. Usikov Institute for Radiophysics and Electronics of the N.A.S. of Ukraine, Kharkiv, Ukraine; V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; Gebze Technical University, Kocaeli, Türkiye). |
| Record Nr. | UNINA-9910896192903321 |
Vladymyrskyi Igor
|
||
| Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||