Machine learning for protein subcellular localization prediction / / Shibiao Wan, Man-Wai Mak |
Autore | Wan Shibiao |
Pubbl/distr/stampa | Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , 2015 |
Descrizione fisica | 1 online resource (210 p.) |
Disciplina | 572/.696 |
Soggetto topico |
Proteins - Physiological transport - Data processing
Machine learning Probabilities - Data processing |
Soggetto genere / forma | Electronic books. |
ISBN |
1-5015-0150-X
1-5015-0152-6 |
Classificazione | WC 7700 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Preface -- Contents -- List of Abbreviations -- 1. Introduction -- 2. Overview of subcellular localization prediction -- 3. Legitimacy of using gene ontology information -- 4. Single-location protein subcellular localization -- 5. From single- to multi-location -- 6. Mining deeper on GO for protein subcellular localization -- 7. Ensemble random projection for large-scale predictions -- 8. Experimental setup -- 9. Results and analysis -- 10. Properties of the proposed predictors -- 11. Conclusions and future directions -- A. Webservers for protein subcellular localization -- B. Support vector machines -- C. Proof of no bias in LOOCV -- D. Derivatives for penalized logistic regression -- Bibliography -- Index |
Record Nr. | UNINA-9910460442103321 |
Wan Shibiao | ||
Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Machine learning for protein subcellular localization prediction / / Shibiao Wan, Man-Wai Mak |
Autore | Wan Shibiao |
Pubbl/distr/stampa | Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , 2015 |
Descrizione fisica | 1 online resource (210 p.) |
Disciplina | 572/.696 |
Soggetto topico |
Proteins - Physiological transport - Data processing
Machine learning Probabilities - Data processing |
Soggetto non controllato |
Bioinformatics
Computer Science Proteomics |
ISBN |
1-5015-0150-X
1-5015-0152-6 |
Classificazione | WC 7700 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Preface -- Contents -- List of Abbreviations -- 1. Introduction -- 2. Overview of subcellular localization prediction -- 3. Legitimacy of using gene ontology information -- 4. Single-location protein subcellular localization -- 5. From single- to multi-location -- 6. Mining deeper on GO for protein subcellular localization -- 7. Ensemble random projection for large-scale predictions -- 8. Experimental setup -- 9. Results and analysis -- 10. Properties of the proposed predictors -- 11. Conclusions and future directions -- A. Webservers for protein subcellular localization -- B. Support vector machines -- C. Proof of no bias in LOOCV -- D. Derivatives for penalized logistic regression -- Bibliography -- Index |
Record Nr. | UNINA-9910797139603321 |
Wan Shibiao | ||
Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Machine learning for protein subcellular localization prediction / / Shibiao Wan, Man-Wai Mak |
Autore | Wan Shibiao |
Pubbl/distr/stampa | Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , 2015 |
Descrizione fisica | 1 online resource (210 p.) |
Disciplina | 572/.696 |
Soggetto topico |
Proteins - Physiological transport - Data processing
Machine learning Probabilities - Data processing |
Soggetto non controllato |
Bioinformatics
Computer Science Proteomics |
ISBN |
1-5015-0150-X
1-5015-0152-6 |
Classificazione | WC 7700 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Preface -- Contents -- List of Abbreviations -- 1. Introduction -- 2. Overview of subcellular localization prediction -- 3. Legitimacy of using gene ontology information -- 4. Single-location protein subcellular localization -- 5. From single- to multi-location -- 6. Mining deeper on GO for protein subcellular localization -- 7. Ensemble random projection for large-scale predictions -- 8. Experimental setup -- 9. Results and analysis -- 10. Properties of the proposed predictors -- 11. Conclusions and future directions -- A. Webservers for protein subcellular localization -- B. Support vector machines -- C. Proof of no bias in LOOCV -- D. Derivatives for penalized logistic regression -- Bibliography -- Index |
Record Nr. | UNINA-9910819391103321 |
Wan Shibiao | ||
Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|