Proceedings of the WOSP '07 : sixth International Workshop on Software and Performance : February 5-8, 2007, Buenos Aires, Argentina
| Proceedings of the WOSP '07 : sixth International Workshop on Software and Performance : February 5-8, 2007, Buenos Aires, Argentina |
| Autore | Majumdar Shikharesh |
| Pubbl/distr/stampa | [Place of publication not identified], : ACM, 2007 |
| Descrizione fisica | 1 online resource (210 pages) |
| Collana | ACM Conferences |
| Soggetto topico |
Engineering & Applied Sciences
Computer Science |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti |
Proceedings of the Workshop on Software and Performance '07
Proceedings of the 6th International Workshop on Software and Performance WOSP '07 Workshop on Software and Performance, Buenos Aires, Argentina - February 05 - 08, 2007 |
| Record Nr. | UNINA-9910376490403321 |
Majumdar Shikharesh
|
||
| [Place of publication not identified], : ACM, 2007 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Resource Management on Distributed Systems : Principles and Techniques
| Resource Management on Distributed Systems : Principles and Techniques |
| Autore | Majumdar Shikharesh |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (323 pages) |
| Disciplina | 004.36 |
| Soggetto topico |
Resource allocation
Parallel processing (Electronic computers) |
| ISBN |
9781119912958
1119912954 9781119912965 1119912962 9781119912941 1119912946 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Author -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Introduction to Distributed and Parallel Computing -- 1.2 Types of Computing Environments -- 1.3 Units of Computation -- 1.3.1 Process -- 1.3.2 Threads -- 1.3.3 Resource Management Operations -- 1.4 Principles Underlying Resource Management -- 1.4.1 Principle 1: Use Knowledge of Application/Workload Characteristics -- 1.4.2 Principle 2: Monitor and Adjust -- 1.4.3 Principle 3: Use Knowledge of System Characteristics -- 1.4.4 Principle 4: Perform Load Balancing -- 1.4.5 Principle 5: Static Versus Dynamic -- 1.5 Evolution of Distributed Systems -- 1.5.1 Nodes Communicating via Remote Procedure Calls (RPC) -- 1.5.2 Distributed Object Based Computing Systems -- 1.5.3 Parallel and Cluster Computing -- 1.5.4 Service‐Oriented Architecture -- 1.5.5 Grids -- 1.5.6 Clouds -- 1.5.7 Edge Computing -- 1.5.8 Smart Facilities -- 1.6 Summary -- 1.6.1 Book Components -- References -- Chapter 2 Characterization of Parallelism in Applications -- 2.1 Introduction -- 2.2 The Precedence Graph Model -- 2.3 Graph‐Based Characteristics -- 2.3.1 Parallelism Profile -- 2.3.2 Shape -- 2.4 Single‐Point Characteristics -- 2.4.1 Maximum Parallelism -- 2.4.2 Fraction of Sequential Work -- 2.4.3 Average Parallelism -- 2.5 Performance Metrics -- 2.5.1 Completion Time -- 2.5.1.1 Processor Sharing Scheduling -- 2.5.2 Speedup -- 2.5.3 Efficiency -- 2.5.4 Completion Time‐Efficiency Profile -- 2.5.4.1 The Knee -- 2.6 Impact of Parallelism Characteristics on Performance -- 2.6.1 Impact of Fraction of Sequential work -- 2.6.2 Impact of Average Parallelism -- 2.6.2.1 Bounds Based on Multiple Characteristics -- 2.7 Energy Performance Trade‐Off -- 2.7.1 Relationship Between Energy Consumption and Speedup.
2.7.2 Relationship Between Energy and Fraction of Sequential Work -- 2.7.3 Relationship Between Energy and Average Parallelism -- 2.8 Summary -- Exercises -- References -- Chapter 3 Resource Management Techniques for Distributed Computing Systems -- 3.1 Resource Allocation -- 3.1.1 Graham's Anomaly -- 3.1.2 The Impact of Processor Allocation on Performance -- 3.1.3 Optimal Allocation Techniques -- 3.1.3.1 Hu's Algorithm -- 3.1.4 Heuristic Techniques for Processor Allocation -- 3.1.4.1 Largest Processing Time First -- 3.1.4.2 The Multifit Technique -- 3.2 Task/Process Scheduling -- 3.2.1 Scheduling of Ready Tasks on a Single Processor -- 3.2.1.1 Scheduling Tasks with SLAs -- 3.2.1.2 Performance Analysis -- 3.3 Grid Scheduling with Deadlines -- 3.3.1 Performance Analysis -- 3.4 Scheduling on Client-Server Systems -- 3.4.1 Performance Analysis -- 3.4.2 Software Bottlenecks -- 3.5 Summary -- Exercises -- References -- Chapter 4 Resource Management on Systems Subjected to Uncertainties Associated with Workload and System Parameters -- 4.1 Introduction -- 4.2 Handling Errors Associated with User Estimates of Job Execution Times -- 4.2.1 Overestimation of Job Execution Times -- 4.2.1.1 Schedule Exceptions Manager -- 4.2.1.2 Prescheduling Engine -- 4.3 Underestimation of Job Execution Times -- 4.3.1 Performance Analysis -- 4.4 Handling Uncertainties Associated with the Local Scheduling Policy -- 4.5 Any Schedulability Criterion -- 4.5.1 Application of AS Criterion: An Example -- 4.6 Matchmaking in the Dark: AS Criterion‐Based Matchmaking -- 4.6.1 Hybrid Matchmaking -- 4.6.1.1 Independent -- 4.6.1.2 Combined -- 4.6.2 Performance Comparison of Independent and Combined Matchmaking -- 4.7 Soft Advance Reservation Requests -- 4.7.1 Computation of System‐Generated Estimate of Job Execution Time -- 4.7.2 Performance Evaluation -- 4.8 Summary -- Exercises. References -- Chapter 5 Resource Auto‐Scaling -- 5.1 Introduction -- 5.1.1 An Example System -- 5.2 Request Characteristics -- 5.3 Horizontal Auto‐Scaling -- 5.3.1 Reactive Auto‐Scaling -- 5.3.1.1 Reactive Auto‐Scaling Algorithm -- 5.3.2 Performance Analysis of the Reactive Auto‐Scaling Algorithm -- 5.3.3 Proactive Auto‐Scaling -- 5.3.3.1 The Proactive Auto‐Scaling Algorithm -- 5.3.4 Performance Analysis of the Proactive Auto‐Scaling Algorithm -- 5.4 Hybrid Auto‐Scaling -- 5.4.1 Performance Analysis of the Hybrid Auto‐Scaling Algorithm -- 5.4.2 Comparison with Pure Reactive and Proactive Approaches -- 5.5 Summary -- Exercises -- References -- Chapter 6 Resource Management for Systems Running MapReduce Jobs -- 6.1 Introduction -- 6.2 MapReduce -- 6.3 Resource Management Techniques for MapReduce Job Requests to be Satisfied on a Best Effort Basis -- 6.4 Resource Management Techniques for MapReduce Job Requests with Service Level Agreements -- 6.4.1 The Budget‐Based MapReduce Resource Management Technique -- 6.4.1.1 High‐Level Description -- 6.4.2 Performance Analysis -- 6.5 The Constraint Programming‐Based MapReduce Resource Management Technique -- 6.5.1 The MRCP‐RM Algorithm -- 6.5.2 Performance Analysis for MRCP‐RM -- 6.6 Errors Associated with User Estimates of Task Execution times -- 6.6.1 The Prescheduling Error‐Handling Technique -- 6.6.1.1 Performance Analysis -- 6.6.2 The Runtime Error‐Handling Technique -- 6.6.2.1 Performance Analysis -- 6.7 Summary -- Exercises -- References -- Chapter 7 Energy Aware Resource Management -- 7.1 Introduction -- 7.1.1 Dynamic Voltage Frequency Scaling -- 7.2 DVFS‐Based Resource Management Techniques -- 7.3 The EAMR‐RM Algorithm -- 7.3.1 Performance Analysis of EAMR‐RM -- 7.3.1.1 The Impact of Arrival Rate of Jobs -- 7.3.1.2 The Effect of Map Task Execution Times -- 7.3.1.3 The Impact of Number of Resources. 7.4 Configurable Resource Manager for Processing a Batch of MapReduce Jobs -- 7.4.1 Constraint Program for the Configurable Resource Manager -- 7.5 Performance Analysis of CRM -- 7.5.1 Effect of Batch Completion Time Bound -- 7.5.2 Impact of the Missed Deadline Ratio Bound -- 7.5.3 The Impact of Deadline Multiplier -- 7.6 Reducing the Number of Active Servers -- 7.7 Summary -- Exercises -- References -- Chapter 8 Streaming Data and Complex Event Processing -- 8.1 Introduction -- 8.2 Management of Streaming Data -- 8.3 Dynamic Priority‐Based Scheduling -- 8.3.1 The Spark Streaming Data Processing Platform -- 8.3.1.1 The Spark Streaming System -- 8.4 Data‐Driven Priority Scheduler (DDPS) -- 8.4.1 Algorithm 1 -- 8.4.2 Algorithm 2 -- 8.4.3 Algorithm 3 -- 8.4.4 Performance Analysis -- 8.5 Multitennant Systems -- 8.5.1 Apache Storm -- 8.5.2 Resource Management on a Multitenant Storm Cluster -- 8.5.2.1 Isolation Scheduler -- 8.5.2.2 Static Priority‐Based Scheduler (SPS) -- 8.5.2.3 Dynamic Priority Scheduler -- 8.5.2.4 Performance Analysis -- 8.6 Complex Event Processing -- 8.6.1 CQL Query and CEP -- 8.6.2 CEP Architecture -- 8.6.3 Example CEP Systems -- 8.6.4 CEP Platforms -- 8.6.4.1 Apache Siddhi -- 8.7 Remote Patient Monitoring System -- 8.7.1 The SCEP System -- 8.7.2 The Mobile CEP (MCEP) System -- 8.7.3 Performance Analysis -- 8.7.3.1 Remaining Battery Life -- 8.7.3.2 CEP Latency -- 8.8 Summary -- Exercises -- References -- Chapter 9 Data Indexing and Filtering Techniques for Big Data Systems -- 9.1 Introduction -- 9.2 Harnessing Big Data -- 9.3 Data Indexing -- 9.4 Inverted Index -- 9.4.1 Enhancements to the Inverted Index Technique -- 9.5 Graph‐Based Indexing -- 9.6 Boolean AND Queries -- 9.7 Performance Analysis -- 9.7.1 Search Latency -- 9.7.1.1 The Impact of Dcount on Search Latency -- 9.7.1.2 Impact of SKcount on Search Latency. 9.7.2 Indexing Overhead -- 9.7.2.1 Indexing Time -- 9.7.2.2 Memory Usage -- 9.8 Data Filtering -- 9.8.1 Processing of Large Volumes of Data -- 9.9 Parallel Processing Platforms -- 9.9.1 Spark Architecture -- 9.10 Motivations for Data Reduction -- 9.10.1 Reducing Data Volume -- 9.11 Data Filtering -- 9.11.1 Basic Approach for Data Filtering -- 9.11.2 The Filtering Algorithm -- 9.11.3 Search Method -- 9.12 Performance Analysis -- 9.12.1 Node Parallelism vs. Core Parallelism -- 9.13 Streaming Data -- 9.13.1 System Performance -- 9.14 Handling User Preferences Comprising Keywords Connected by Boolean Operators -- 9.14.1 Performance Analysis -- 9.15 Summary -- Exercises -- References -- Chapter 10 Sensor‐Based Systems -- 10.1 Introduction -- 10.1.1 Architecture for Cloud‐Based Smart Facilities Management -- 10.2 Middleware Services -- 10.3 Sensor‐Based Bridge Management -- 10.4 Research Collaboration Platform for Management of Sensor‐Based Smart Facilities -- 10.5 Resource Management on Wireless Sensor Networks -- 10.6 Scheduling on WSNs -- 10.6.1 Knowledge Free Algorithms -- 10.6.2 Knowledge‐Based Algorithms -- 10.6.2.1 Description of the Knowledge‐Based Scheduling Algorithms -- 10.6.3 Performance of Scheduling Algorithms -- 10.6.3.1 Performance of Algorithms That Use a Single Characteristic -- 10.6.3.2 Performance of Algorithms That Use the Knowledge of Both Application and System Characteristics -- 10.7 Sensor Allocation -- 10.7.1 Dynamic Allocation Algorithms -- 10.7.1.1 Knowledge‐Free Algorithm -- 10.7.1.2 Knowledge‐Based Algorithms -- 10.7.2 Static Allocation Algorithms -- 10.7.2.1 Knowledge‐Free Allocation Algorithms -- 10.7.2.2 Allocation Algorithms Based on the Knowledge of Applications -- 10.7.3 Performance of Sensor Allocation Algorithms -- 10.7.3.1 Performance of Dynamic Allocation Algorithms. 10.7.3.2 Performance of Static Allocation Algorithms. |
| Record Nr. | UNINA-9911019503303321 |
Majumdar Shikharesh
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||