top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Machine Learning for Medical Image Reconstruction [[electronic resource] ] : Second International Workshop, MLMIR 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Florian Knoll, Andreas Maier, Daniel Rueckert, Jong Chul Ye
Machine Learning for Medical Image Reconstruction [[electronic resource] ] : Second International Workshop, MLMIR 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Florian Knoll, Andreas Maier, Daniel Rueckert, Jong Chul Ye
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (ix, 266 pages)
Disciplina 610.28563
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Artificial intelligence
Education—Data processing
Application software
Bioinformatics
Optical data processing
Health informatics
Artificial Intelligence
Computers and Education
Computer Appl. in Social and Behavioral Sciences
Computational Biology/Bioinformatics
Image Processing and Computer Vision
Health Informatics
ISBN 3-030-33843-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Deep Learning for Magnetic Resonance Imaging -- Recon-GLGAN: A Global-Local context based Generative Adversarial Network for MRI Reconstruction- Self-supervised Recurrent Neural Network for 4D Abdominal and In-utero MR Imaging -- Fast Dynamic Perfusion and Angiography Reconstruction using an end-to-end 3D Convolutional Neural Network -- APIR-Net: Autocalibrated Parallel Imaging Reconstruction using a Neural Network -- Accelerated MRI Reconstruction with Dual-domain Generative Adversarial Network -- Deep Learning for Low-Field to High-Field MR: Image Quality Transfer with Probabilistic Decimation Simulator -- Joint Multi-Anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions -- Modeling and Analysis Brain Development via Discriminative Dictionary Learning -- Deep Learning for Computed Tomography -- Virtual Thin Slice: 3D Conditional GAN-based Super-resolution for CT Slice Interval -- Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior -- Measuring CT Reconstruction Quality with Deep Convolutional Neural Networks -- Deep Learning based Metal Inpainting in the Projection Domain: Initial Results -- Deep Learning for General Image Reconstruction -- Flexible Conditional Image Generation of Missing Data with Learned Mental Maps -- Spatiotemporal PET reconstruction using ML-EM with learned diffeomorphic deformation -- Stain Style Transfer using Transitive Adversarial Networks -- Blind Deconvolution Microscopy Using Cycle Consistent CNN with Explicit PSF Layer -- Deep Learning based approach to quantification of PET tracer uptake in small tumors -- Task-GAN: Improving Generative Adversarial Network for Image Reconstruction -- Gamma Source Location Learning from Synthetic Multi-Pinhole Collimator Data -- Neural Denoising of Ultra-Low Dose Mammography -- Image Reconstruction in a Manifold of Image Patches: Application to Whole-fetus Ultrasound Imaging -- Image Super Resolution via Bilinear Pooling: Application to Confocal Endomicroscopy -- TPSDicyc: Improved Deformation Invariant Cross-domain Medical Image Synthesis -- PredictUS: A Method to Extend the Resolution-Precision Trade-off in Quantitative Ultrasound Image Reconstruction.
Record Nr. UNISA-996466288703316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Machine Learning for Medical Image Reconstruction : Second International Workshop, MLMIR 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Florian Knoll, Andreas Maier, Daniel Rueckert, Jong Chul Ye
Machine Learning for Medical Image Reconstruction : Second International Workshop, MLMIR 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Florian Knoll, Andreas Maier, Daniel Rueckert, Jong Chul Ye
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (ix, 266 pages)
Disciplina 610.28563
006.31
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Artificial intelligence
Education—Data processing
Application software
Bioinformatics
Optical data processing
Medical informatics
Artificial Intelligence
Computers and Education
Computer Appl. in Social and Behavioral Sciences
Computational Biology/Bioinformatics
Image Processing and Computer Vision
Health Informatics
ISBN 3-030-33843-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Deep Learning for Magnetic Resonance Imaging -- Recon-GLGAN: A Global-Local context based Generative Adversarial Network for MRI Reconstruction- Self-supervised Recurrent Neural Network for 4D Abdominal and In-utero MR Imaging -- Fast Dynamic Perfusion and Angiography Reconstruction using an end-to-end 3D Convolutional Neural Network -- APIR-Net: Autocalibrated Parallel Imaging Reconstruction using a Neural Network -- Accelerated MRI Reconstruction with Dual-domain Generative Adversarial Network -- Deep Learning for Low-Field to High-Field MR: Image Quality Transfer with Probabilistic Decimation Simulator -- Joint Multi-Anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions -- Modeling and Analysis Brain Development via Discriminative Dictionary Learning -- Deep Learning for Computed Tomography -- Virtual Thin Slice: 3D Conditional GAN-based Super-resolution for CT Slice Interval -- Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior -- Measuring CT Reconstruction Quality with Deep Convolutional Neural Networks -- Deep Learning based Metal Inpainting in the Projection Domain: Initial Results -- Deep Learning for General Image Reconstruction -- Flexible Conditional Image Generation of Missing Data with Learned Mental Maps -- Spatiotemporal PET reconstruction using ML-EM with learned diffeomorphic deformation -- Stain Style Transfer using Transitive Adversarial Networks -- Blind Deconvolution Microscopy Using Cycle Consistent CNN with Explicit PSF Layer -- Deep Learning based approach to quantification of PET tracer uptake in small tumors -- Task-GAN: Improving Generative Adversarial Network for Image Reconstruction -- Gamma Source Location Learning from Synthetic Multi-Pinhole Collimator Data -- Neural Denoising of Ultra-Low Dose Mammography -- Image Reconstruction in a Manifold of Image Patches: Application to Whole-fetus Ultrasound Imaging -- Image Super Resolution via Bilinear Pooling: Application to Confocal Endomicroscopy -- TPSDicyc: Improved Deformation Invariant Cross-domain Medical Image Synthesis -- PredictUS: A Method to Extend the Resolution-Precision Trade-off in Quantitative Ultrasound Image Reconstruction.
Record Nr. UNINA-9910349269003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning for Medical Image Reconstruction [[electronic resource] ] : First International Workshop, MLMIR 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Florian Knoll, Andreas Maier, Daniel Rueckert
Machine Learning for Medical Image Reconstruction [[electronic resource] ] : First International Workshop, MLMIR 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Florian Knoll, Andreas Maier, Daniel Rueckert
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (X, 158 p. 67 illus.)
Disciplina 616.07540285
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Artificial intelligence
Optical data processing
Computer communication systems
Logic design
Health informatics
Artificial Intelligence
Image Processing and Computer Vision
Computer Communication Networks
Logic Design
Health Informatics
ISBN 3-030-00129-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Deep learning for magnetic resonance imaging -- Deep learning for computed tomography -- Deep learning for general image reconstruction.
Record Nr. UNISA-996466192303316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Machine Learning for Medical Image Reconstruction : First International Workshop, MLMIR 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Florian Knoll, Andreas Maier, Daniel Rueckert
Machine Learning for Medical Image Reconstruction : First International Workshop, MLMIR 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Florian Knoll, Andreas Maier, Daniel Rueckert
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (X, 158 p. 67 illus.)
Disciplina 616.07540285
006.31
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Artificial intelligence
Optical data processing
Computer networks
Logic design
Medical informatics
Artificial Intelligence
Image Processing and Computer Vision
Computer Communication Networks
Logic Design
Health Informatics
ISBN 9783030001292
3030001296
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Deep learning for magnetic resonance imaging -- Deep learning for computed tomography -- Deep learning for general image reconstruction.
Record Nr. UNINA-9910349407103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 Workshops : LDTM 2024, MMMI/ML4MHD 2024, ML-CDS 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6–10, 2024, Proceedings / / edited by Anna Schroder, Xiang Li, Tanveer Syeda-Mahmood, Neil P. Oxtoby, Alexandra Young, Alessa Hering, Tejas S. Mathai, Pritam Mukherjee, Sven Kuckertz, Tiantian He, Isaac Llorente-Saguer, Andreas Maier, Satyananda Kashyap, Hayit Greenspan, Anant Madabhushi
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 Workshops : LDTM 2024, MMMI/ML4MHD 2024, ML-CDS 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6–10, 2024, Proceedings / / edited by Anna Schroder, Xiang Li, Tanveer Syeda-Mahmood, Neil P. Oxtoby, Alexandra Young, Alessa Hering, Tejas S. Mathai, Pritam Mukherjee, Sven Kuckertz, Tiantian He, Isaac Llorente-Saguer, Andreas Maier, Satyananda Kashyap, Hayit Greenspan, Anant Madabhushi
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XIX, 262 p. 99 illus., 95 illus. in color.)
Disciplina 006
Collana Lecture Notes in Computer Science
Soggetto topico Image processing - Digital techniques
Computer vision
Computer Imaging, Vision, Pattern Recognition and Graphics
ISBN 3-031-84525-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto LDTM Workshop -- Disease Progression Modelling and Stratification for detecting sub-trajectories in the natural history of pathologies: application toParkinson’s Disease trajectory modelling -- Back to the Future: Challenges of Sparse and Irregular Medical Image Time Series -- Individualized multi-horizon MRI trajectory prediction for Alzheimer’s Disease -- Toward, for the Alzheimer’s Disease Neuroimaging Initiative Towards Longitudinal Characterization of Multiple Sclerosis Atrophy Employing SynthSeg Framework and Normative Modeling -- BachCuadraSegHeD: Segmentation of Heterogeneous Data for Multiple SclerosisLesions with Anatomical Constraints -- Longitudinal Segmentation of MS Lesions via Temporal Difference Weighting -- Registration of Longitudinal Liver Examinations for Tumor ProgressAssessment -- Tracking lesion evolution using a Boundary Enhanced Approach for MS change segmentation (BEAMS) -- A Radiological-based Coordinate System for the Human Body: A Proof-of-Concept -- MMMI-ML4MHD Workshop -- Language Models Meet Anomaly Detection for Better Interpretabilityand Generalizability -- A Diffusion Model Embedded WCSAU-Net for 3D MRI Brain Tumor Segmentation -- Predicting Human Brain States with Transformer -- Modality Image Quality Prediction for Time-Resolved CT fromBreathing Signals -- RATNUS: Rapid, Automatic Thalamic Nuclei Segmentation using Multimodal MRI inputs -- HyperMM : Robust Multimodal Learning with Varying-sized Inputs -- EMIT: H&E to Multiplex-immunohistochemistry Image Translation with Dual-Branch Pix2pix Generator -- Physics-Informed Latent Diffusion for Multimodal Brain MRI Synthesis -- ML-CDS Workshop -- MedPromptX: Grounded Multimodal Prompting for Chest X-rayDiagnosis -- Predicting Stroke through Retinal Graphs and Multimodal Self-supervised Learning -- Multimodality for Diagnosis of Asian Choroidal Vasculopathy: Resultsfrom a Novel Dataset and Deep-learning Experiments -- Multimodality Frequency Feature Customized Learning for PediatricVentricular Septal Defects Identification.
Record Nr. UNINA-9910996484603321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 Workshops : LDTM 2024, MMMI/ML4MHD 2024, ML-CDS 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6–10, 2024, Proceedings / / edited by Anna Schroder, Xiang Li, Tanveer Syeda-Mahmood, Neil P. Oxtoby, Alexandra Young, Alessa Hering, Tejas S. Mathai, Pritam Mukherjee, Sven Kuckertz, Tiantian He, Isaac Llorente-Saguer, Andreas Maier, Satyananda Kashyap, Hayit Greenspan, Anant Madabhushi
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 Workshops : LDTM 2024, MMMI/ML4MHD 2024, ML-CDS 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6–10, 2024, Proceedings / / edited by Anna Schroder, Xiang Li, Tanveer Syeda-Mahmood, Neil P. Oxtoby, Alexandra Young, Alessa Hering, Tejas S. Mathai, Pritam Mukherjee, Sven Kuckertz, Tiantian He, Isaac Llorente-Saguer, Andreas Maier, Satyananda Kashyap, Hayit Greenspan, Anant Madabhushi
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XIX, 262 p. 99 illus., 95 illus. in color.)
Disciplina 006
Collana Lecture Notes in Computer Science
Soggetto topico Image processing - Digital techniques
Computer vision
Computer Imaging, Vision, Pattern Recognition and Graphics
ISBN 3-031-84525-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto LDTM Workshop -- Disease Progression Modelling and Stratification for detecting sub-trajectories in the natural history of pathologies: application toParkinson’s Disease trajectory modelling -- Back to the Future: Challenges of Sparse and Irregular Medical Image Time Series -- Individualized multi-horizon MRI trajectory prediction for Alzheimer’s Disease -- Toward, for the Alzheimer’s Disease Neuroimaging Initiative Towards Longitudinal Characterization of Multiple Sclerosis Atrophy Employing SynthSeg Framework and Normative Modeling -- BachCuadraSegHeD: Segmentation of Heterogeneous Data for Multiple SclerosisLesions with Anatomical Constraints -- Longitudinal Segmentation of MS Lesions via Temporal Difference Weighting -- Registration of Longitudinal Liver Examinations for Tumor ProgressAssessment -- Tracking lesion evolution using a Boundary Enhanced Approach for MS change segmentation (BEAMS) -- A Radiological-based Coordinate System for the Human Body: A Proof-of-Concept -- MMMI-ML4MHD Workshop -- Language Models Meet Anomaly Detection for Better Interpretabilityand Generalizability -- A Diffusion Model Embedded WCSAU-Net for 3D MRI Brain Tumor Segmentation -- Predicting Human Brain States with Transformer -- Modality Image Quality Prediction for Time-Resolved CT fromBreathing Signals -- RATNUS: Rapid, Automatic Thalamic Nuclei Segmentation using Multimodal MRI inputs -- HyperMM : Robust Multimodal Learning with Varying-sized Inputs -- EMIT: H&E to Multiplex-immunohistochemistry Image Translation with Dual-Branch Pix2pix Generator -- Physics-Informed Latent Diffusion for Multimodal Brain MRI Synthesis -- ML-CDS Workshop -- MedPromptX: Grounded Multimodal Prompting for Chest X-rayDiagnosis -- Predicting Stroke through Retinal Graphs and Multimodal Self-supervised Learning -- Multimodality for Diagnosis of Asian Choroidal Vasculopathy: Resultsfrom a Novel Dataset and Deep-learning Experiments -- Multimodality Frequency Feature Customized Learning for PediatricVentricular Septal Defects Identification.
Record Nr. UNISA-996655268903316
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Medical Imaging Systems [[electronic resource] ] : An Introductory Guide / / edited by Andreas Maier, Stefan Steidl, Vincent Christlein, Joachim Hornegger
Medical Imaging Systems [[electronic resource] ] : An Introductory Guide / / edited by Andreas Maier, Stefan Steidl, Vincent Christlein, Joachim Hornegger
Autore Maier Andreas
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Springer Nature, 2018
Descrizione fisica 1 online resource (X, 259 p. 167 illus.)
Disciplina 006.6
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Computer Imaging, Vision, Pattern Recognition and Graphics
Soggetto non controllato Computer science
Optical data processing
ISBN 3-319-96520-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- System Theory -- Image Processing -- Endoscopy -- Microscopy -- Magnetic Resonance Imaging -- X-ray Imaging -- Computed Tomography -- X-ray Phase Contrast: Research on a Future Imaging Modality -- Emission Tomography -- Ultrasound -- Optical Coherence Tomography -- Acronyms. .
Record Nr. UNISA-996466308003316
Maier Andreas  
Springer Nature, 2018
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Medical Imaging Systems : An Introductory Guide / / edited by Andreas Maier, Stefan Steidl, Vincent Christlein, Joachim Hornegger
Medical Imaging Systems : An Introductory Guide / / edited by Andreas Maier, Stefan Steidl, Vincent Christlein, Joachim Hornegger
Autore Maier Andreas
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Springer Nature, 2018
Descrizione fisica 1 online resource (X, 259 p. 167 illus.)
Disciplina 006.6
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Image processing - Digital techniques
Computer vision
Computer Imaging, Vision, Pattern Recognition and Graphics
ISBN 9783319965208
3319965204
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- System Theory -- Image Processing -- Endoscopy -- Microscopy -- Magnetic Resonance Imaging -- X-ray Imaging -- Computed Tomography -- X-ray Phase Contrast: Research on a Future Imaging Modality -- Emission Tomography -- Ultrasound -- Optical Coherence Tomography -- Acronyms. .
Record Nr. UNINA-9910349415703321
Maier Andreas  
Springer Nature, 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Scale Matters : The Quality of Quantity in Human Culture and Sociality / / ed. by M. Dores Cruz, Thomas Widlok
Scale Matters : The Quality of Quantity in Human Culture and Sociality / / ed. by M. Dores Cruz, Thomas Widlok
Pubbl/distr/stampa Bielefeld : , : transcript Verlag, , [2022]
Descrizione fisica 1 online resource (232 p.)
Collana Edition Kulturwissenschaft
Soggetto topico SOCIAL SCIENCE / Popular Culture
Soggetto non controllato Cultural Anthropology
Cultural Complexity
Cultural Studies
Cultural Theory
Culture
Ethnic Groups
Ethnology
Hunter-Gatherer Studies
Science
Social Relations
Sociality
Sociology of Science
ISBN 3-8394-6099-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Introduction: Why scale matters -- How do we scale hunter-gatherers’ social networks? -- What good is archaeology? -- Upscaling forager mobility and broadening forager relations -- Scales of interaction -- A large-scale view on ‘small-scale societies’ -- Socioecological factors influence hunter-gatherers -- Scale and Inuit social relations -- Mikea, Malagasy, or hunter-gatherers? -- Scaling an island of hunter-gatherers -- Authors’ biographies
Record Nr. UNISA-996478968603316
Bielefeld : , : transcript Verlag, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Scale Matters : The Quality of Quantity in Human Culture and Sociality / / ed. by M. Dores Cruz, Thomas Widlok
Scale Matters : The Quality of Quantity in Human Culture and Sociality / / ed. by M. Dores Cruz, Thomas Widlok
Pubbl/distr/stampa Bielefeld : , : transcript Verlag, , [2022]
Descrizione fisica 1 online resource (232 p.)
Disciplina 306
Collana Edition Kulturwissenschaft
Soggetto topico SOCIAL SCIENCE / Popular Culture
Soggetto non controllato Cultural Anthropology
Cultural Complexity
Cultural Studies
Cultural Theory
Culture
Ethnic Groups
Ethnology
Hunter-Gatherer Studies
Science
Social Relations
Sociality
Sociology of Science
ISBN 9783839460993
3839460999
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Introduction: Why scale matters -- How do we scale hunter-gatherers’ social networks? -- What good is archaeology? -- Upscaling forager mobility and broadening forager relations -- Scales of interaction -- A large-scale view on ‘small-scale societies’ -- Socioecological factors influence hunter-gatherers -- Scale and Inuit social relations -- Mikea, Malagasy, or hunter-gatherers? -- Scaling an island of hunter-gatherers -- Authors’ biographies
Record Nr. UNINA-9910831813603321
Bielefeld : , : transcript Verlag, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui