top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Essential ordinary differential equations / / Robert Magnus
Essential ordinary differential equations / / Robert Magnus
Autore Magnus Robert
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (290 pages)
Disciplina 381
Collana Springer Undergraduate Mathematics
Soggetto topico Differential equations
Equacions diferencials
Soggetto genere / forma Llibres electrònics
ISBN 9783031115318
9783031115301
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Linear Ordinary Differential Equations -- 1.1 First Order Linear Equations -- 1.2 The nth Order Linear Equation -- 1.2.1 The Wronskian -- 1.2.2 Non-homogeneous Equations -- 1.2.3 Complex Solutions -- 1.2.4 Exercises -- 1.2.5 Projects -- 1.3 Homogeneous Linear Equations with Constant Coefficients -- 1.3.1 What to do About Multiple Roots -- 1.3.2 Euler's Equation -- 1.3.3 Exercises -- 1.4 Non-homogeneous Equations with Constant Coefficients -- 1.4.1 How to Calculate a Particular Solution -- 1.4.2 Exercises -- 1.4.3 Projects -- 1.5 Boundary Value Problems -- 1.5.1 Boundary Conditions -- 1.5.2 Green's Function -- Practicalities -- 1.5.3 Exercises -- 2 Separation of Variables -- 2.1 Separable Equations -- 2.1.1 The Autonomous Case -- 2.1.2 The Non-autonomous Case -- 2.1.3 Exercises -- 2.2 One-Parameter Groups of Symmetries -- 2.2.1 Exercises -- 2.3 Newton's Equation -- 2.3.1 Motion in a Regular Level Set -- 2.3.2 Critical Points -- Small Oscillations -- 2.3.3 Exercises -- 2.4 Motion in a Central Force Field -- 3 Series Solutions of Linear Equations -- 3.1 Solutions at an Ordinary Point -- 3.1.1 Preliminaries on Power Series -- 3.1.2 Solution in Power Series at an Ordinary Point -- 3.1.3 Exercises -- 3.1.4 Projects -- 3.2 Solutions at a Regular Singular Point -- 3.2.1 The Method of Frobenius -- 3.2.2 The Second Solution When γ1-γ2 Is an Integer -- Summary of the Second Solution -- 3.2.3 The Point at Infinity -- 3.2.4 Exercises -- 3.2.5 Projects -- 4 Existence Theory -- 4.1 Existence and Uniqueness of Solutions -- 4.1.1 Picard's Theorem and Successive Approximations -- 4.1.2 The nth Order Linear Equation Revisited -- 4.1.3 The First Order Vector Equation -- 4.1.4 Exercises -- 4.1.5 Projects -- 5 The Exponential of a Matrix -- 5.1 Defining the Exponential -- 5.1.1 Exercises -- 5.2 Calculation of Matrix Exponentials.
5.2.1 Eigenvector Method -- 5.2.2 Cayley-Hamilton -- 5.2.3 Interpolation Polynomials -- 5.2.4 Newton's Divided Differences -- 5.2.5 Analytic Functions of a Matrix -- 5.2.6 Exercises -- 5.2.7 Projects -- 5.3 Linear Systems with Variable Coefficients -- 5.3.1 Exercises -- 5.3.2 Projects -- 6 Continuation of Solutions -- 6.1 The Maximal Solution -- 6.1.1 Exercises -- 6.2 Dependence on Initial Conditions -- 6.2.1 Differentiability of ϕx0x -- 6.2.2 Higher Derivatives of ϕx0x -- 6.2.3 Equations with Parameters -- 6.2.4 Exercises -- 6.3 Essential Stability Theory -- 6.3.1 Stability of Equilibrium Points -- 6.3.2 Lyapunov Functions -- 6.3.3 Construction of a Lyapunov Function for the Equation dx/dt=Ax -- 6.3.4 Exercises -- 6.3.5 Projects -- 7 Sturm-Liouville Theory -- 7.1 Symmetry and Self-adjointness -- 7.1.1 Rayleigh Quotient -- 7.1.2 Exercises -- 7.2 Eigenvalues and Eigenfunctions -- 7.2.1 Eigenfunction Expansions -- 7.2.2 Mean Square Convergence of Eigenfunction Expansions -- 7.2.3 Eigenvalue Problems with Weights -- 7.2.4 Exercises -- 7.2.5 Projects -- Afterword -- Index.
Record Nr. UNINA-9910632483703321
Magnus Robert  
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamental Mathematical Analysis [[electronic resource] /] / by Robert Magnus
Fundamental Mathematical Analysis [[electronic resource] /] / by Robert Magnus
Autore Magnus Robert
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XX, 433 p. 35 illus., 11 illus. in color.)
Disciplina 515
Collana Springer Undergraduate Mathematics Series
Soggetto topico Functions of real variables
Sequences (Mathematics)
Mathematical analysis
Analysis (Mathematics)
Real Functions
Sequences, Series, Summability
Analysis
ISBN 3-030-46321-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Introduction -- 2 Real Numbers -- 3 Sequences and Series -- 4 Functions and Continuity -- 5 Derivatives and Differentiation -- 6 Integrals and Integration -- 7 The Elementary Transcendental Functions -- 8 The Techniques of Integration -- 9 Complex Numbers -- 10 Complex Sequences and Series -- 11 Function Sequences and Function Series -- 12 Improper Integrals -- Index.
Record Nr. UNISA-996418272703316
Magnus Robert  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Fundamental Mathematical Analysis / / by Robert Magnus
Fundamental Mathematical Analysis / / by Robert Magnus
Autore Magnus Robert
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XX, 433 p. 35 illus., 11 illus. in color.)
Disciplina 515
Collana Springer Undergraduate Mathematics Series
Soggetto topico Functions of real variables
Sequences (Mathematics)
Mathematical analysis
Analysis (Mathematics)
Real Functions
Sequences, Series, Summability
Analysis
ISBN 9783030463212
3030463214
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Introduction -- 2 Real Numbers -- 3 Sequences and Series -- 4 Functions and Continuity -- 5 Derivatives and Differentiation -- 6 Integrals and Integration -- 7 The Elementary Transcendental Functions -- 8 The Techniques of Integration -- 9 Complex Numbers -- 10 Complex Sequences and Series -- 11 Function Sequences and Function Series -- 12 Improper Integrals -- Index.
Record Nr. UNINA-9910484169703321
Magnus Robert  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metric spaces : a companion to analysis / / Robert Magnus
Metric spaces : a companion to analysis / / Robert Magnus
Autore Magnus Robert
Pubbl/distr/stampa Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022]
Descrizione fisica 1 online resource (258 pages)
Disciplina 514.32
Collana Springer undergraduate mathematics series
Soggetto topico Metric spaces
Mathematics
Espais mètrics
Soggetto genere / forma Llibres electrònics
ISBN 9783030949464
9783030949457
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Preliminaries on Sets -- Basic Relations -- Basic Operations -- Writing Predicates -- Set-Building Rules -- Relations and Functions -- Cardinals -- Other Notions -- 1 Metric Spaces -- 1.1 Metrics -- 1.1.1 Rationale for Metrics -- 1.1.2 Defining Metric Space -- 1.1.3 Exercises -- 1.2 Examples of Metric Spaces -- 1.2.1 Normed Spaces -- 1.2.2 Subspaces -- 1.2.3 Examples -- Not Subspaces of Normed Spaces -- 1.2.4 Pseudometrics -- 1.2.5 Cauchy-Schwarz, Hölder, Minkowski -- 1.2.6 Exercises -- 1.3 Cantor's Middle Thirds Set -- 1.3.1 Exercises -- 1.4 The Normed Spaces of Functional Analysis -- 1.4.1 Sequence Spaces -- 1.4.2 Function Spaces -- 1.4.3 Spaces of Continuous Functions -- 1.4.4 Spaces of Integrable Functions -- 1.4.5 Hölder's and Minkowski's Inequalities for Integrals -- 1.4.6 Exercises -- 2 Basic Theory of Metric Spaces -- 2.1 Balls in a Metric Space -- 2.1.1 Limit of a Convergent Sequence -- 2.1.2 Uniqueness of the Limit -- 2.1.3 Neighbourhoods -- 2.1.4 Bounded Sets -- 2.1.5 Completeness -- a Key Concept -- 2.1.6 Exercises -- 2.2 Open Sets, and Closed -- 2.2.1 Open Sets -- 2.2.2 Union and Intersection of Open Sets -- 2.2.3 Closed Sets -- 2.2.4 Union and Intersection of Closed Sets -- 2.2.5 Characterisation of Open and Closed Sets by Sequences -- 2.2.6 Interior, Closure and Boundary -- 2.2.7 Limit Points of Sets -- 2.2.8 Characterisation of Closure by Limit Points -- 2.2.9 Subspaces -- 2.2.10 Open and Closed Sets in a Subspace -- 2.2.11 Exercises -- 2.3 Continuous Mappings -- 2.3.1 Defining Continuity -- 2.3.2 New Views of Continuity -- 2.3.3 Limits of Functions -- 2.3.4 Characterising Continuity by Sequences -- 2.3.5 Lipschitz Mappings -- 2.3.6 Examples of Continuous Functions -- 2.3.7 Exercises -- 2.4 Continuity of Linear Mappings -- 2.4.1 Continuity Criterion -- 2.4.2 Operator Norms -- 2.4.3 Exercises.
2.5 Homeomorphisms and Topological Properties -- 2.5.1 Equivalent Metrics -- 2.5.2 Exercises -- 2.6 Topologies and σ-Algebras -- 2.6.1 Order Topologies -- 2.6.2 Exercises -- 2.6.3 Pointers to Further Study -- 2.7 () Mazur-Ulam -- 2.7.1 Exercises -- 3 Completeness of the Classical Spaces -- 3.1 Coordinate Spaces and Normed Sequence Spaces -- 3.1.1 Completeness of Rn -- 3.1.2 Completeness of p -- 3.1.3 Exercises -- 3.2 Product Spaces -- 3.2.1 Finitely Many Factors -- 3.2.2 Infinitely Many Factors -- 3.2.3 The Space 2N+ and the Cantor Set -- 3.2.4 Subspaces of Complete Spaces -- 3.2.5 Exercises -- 3.3 Spaces of Continuous Functions -- 3.3.1 Uniform Convergence -- 3.3.2 Series in Normed Spaces -- 3.3.3 The Weierstrass M-Test -- 3.3.4 The Spaces C(R) and Cp(R) -- 3.3.5 Exercises -- 3.4 () Rearrangements -- 3.4.1 Vector Series -- 3.4.2 Exercises -- 3.4.3 Pointers to Further Study -- 3.5 () Invertible Operators -- 3.5.1 Fredholm Integral Equation -- 3.5.2 Exercises -- 3.5.3 Pointers to Further Study -- 3.6 () Tietze -- 3.6.1 Formulas for an Extension -- 3.6.2 Exercises -- 3.6.3 Pointers to Further Study -- 4 Compact Spaces -- 4.1 Sequentially Compact Spaces -- 4.1.1 Continuous Functions on Sequentially Compact Spaces -- 4.1.2 Bolzano-Weierstrass in Rn -- 4.1.3 Sequentially Compact Sets in Rn -- 4.1.4 Sequentially Compact Sets in Other Spaces -- 4.1.5 The Space C(M) -- 4.1.6 Exercises -- 4.2 The Correct Definition of Compactness -- 4.2.1 Thoughts About the Definition -- 4.2.2 Compact Spaces and Compact Sets -- 4.2.3 Continuous Functions on Compact Spaces -- 4.2.4 Uniform Continuity -- 4.2.5 Exercises -- 4.3 Equivalence of Compactness and Sequential Compactness -- 4.3.1 Relative Compactness -- 4.3.2 Local Compactness -- 4.3.3 Exercises -- 4.4 Finite Dimensional Normed Vector Spaces -- 4.4.1 Exercises -- 4.5 () Ascoli -- 4.5.1 Peano's Existence Theorem.
4.5.2 Exercises -- 4.5.3 Pointers to Further Study -- 5 Separable Spaces -- 5.1 Dense Subsets of a Metric Space -- 5.1.1 Defining a Vector-Valued Integral -- 5.1.2 Exercises -- 5.2 Separability -- 5.2.1 Second Countability -- 5.2.2 Exercises -- 5.3 () Weierstrass -- 5.3.1 Exercises -- 5.3.2 Pointers to Further Study -- 5.4 () Stone-Weierstrass -- 5.4.1 Exercises -- 5.4.2 Pointers to Further Study -- 6 Properties of Complete Spaces -- 6.1 Cantor's Nested Intersection Theorem -- Notes About Cantor's Theorem -- 6.1.1 Categories -- Thoughts About the Proof -- 6.1.2 Exercises -- 6.2 () Genericity -- 6.2.1 Exercises -- 6.2.2 Pointers to Further Study -- 6.3 () Nowhere Differentiability -- 6.3.1 Exercises -- 6.3.2 Pointers to Further Study -- 6.4 Fixed Points -- 6.4.1 Exercises -- 6.5 () Picard -- 6.5.1 Exercises -- 6.6 () Zeros -- 6.6.1 Exercises -- 6.6.2 Pointers to Further Study -- 6.7 Completion of a Metric Space -- 6.7.1 Other Ways to Complete a Metric Space -- 6.7.2 Exercises -- 7 Connected Spaces -- 7.1 Connectedness -- 7.1.1 Connected Sets -- 7.1.2 Rules for Connected Sets -- 7.1.3 Connected Subsets of R -- 7.1.4 Exercises -- 7.2 Continuous Mappings and Connectedness -- 7.2.1 Continuous Curves -- 7.2.2 Arcwise Connectedness -- 7.2.3 Exiting a Set -- 7.2.4 Exercises -- 7.3 Connected Components -- 7.3.1 Examples of Connected Components -- 7.3.2 Arcwise Connected Components -- 7.3.3 Exercises -- 7.4 () Peano -- 7.4.1 Exercises -- 7.4.2 Pointers to Further Study -- Afterword -- Index.
Record Nr. UNISA-996466417703316
Magnus Robert  
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Metric spaces : a companion to analysis / / Robert Magnus
Metric spaces : a companion to analysis / / Robert Magnus
Autore Magnus Robert
Pubbl/distr/stampa Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022]
Descrizione fisica 1 online resource (258 pages)
Disciplina 514.32
Collana Springer undergraduate mathematics series
Soggetto topico Metric spaces
Mathematics
Espais mètrics
Soggetto genere / forma Llibres electrònics
ISBN 9783030949464
9783030949457
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Preliminaries on Sets -- Basic Relations -- Basic Operations -- Writing Predicates -- Set-Building Rules -- Relations and Functions -- Cardinals -- Other Notions -- 1 Metric Spaces -- 1.1 Metrics -- 1.1.1 Rationale for Metrics -- 1.1.2 Defining Metric Space -- 1.1.3 Exercises -- 1.2 Examples of Metric Spaces -- 1.2.1 Normed Spaces -- 1.2.2 Subspaces -- 1.2.3 Examples -- Not Subspaces of Normed Spaces -- 1.2.4 Pseudometrics -- 1.2.5 Cauchy-Schwarz, Hölder, Minkowski -- 1.2.6 Exercises -- 1.3 Cantor's Middle Thirds Set -- 1.3.1 Exercises -- 1.4 The Normed Spaces of Functional Analysis -- 1.4.1 Sequence Spaces -- 1.4.2 Function Spaces -- 1.4.3 Spaces of Continuous Functions -- 1.4.4 Spaces of Integrable Functions -- 1.4.5 Hölder's and Minkowski's Inequalities for Integrals -- 1.4.6 Exercises -- 2 Basic Theory of Metric Spaces -- 2.1 Balls in a Metric Space -- 2.1.1 Limit of a Convergent Sequence -- 2.1.2 Uniqueness of the Limit -- 2.1.3 Neighbourhoods -- 2.1.4 Bounded Sets -- 2.1.5 Completeness -- a Key Concept -- 2.1.6 Exercises -- 2.2 Open Sets, and Closed -- 2.2.1 Open Sets -- 2.2.2 Union and Intersection of Open Sets -- 2.2.3 Closed Sets -- 2.2.4 Union and Intersection of Closed Sets -- 2.2.5 Characterisation of Open and Closed Sets by Sequences -- 2.2.6 Interior, Closure and Boundary -- 2.2.7 Limit Points of Sets -- 2.2.8 Characterisation of Closure by Limit Points -- 2.2.9 Subspaces -- 2.2.10 Open and Closed Sets in a Subspace -- 2.2.11 Exercises -- 2.3 Continuous Mappings -- 2.3.1 Defining Continuity -- 2.3.2 New Views of Continuity -- 2.3.3 Limits of Functions -- 2.3.4 Characterising Continuity by Sequences -- 2.3.5 Lipschitz Mappings -- 2.3.6 Examples of Continuous Functions -- 2.3.7 Exercises -- 2.4 Continuity of Linear Mappings -- 2.4.1 Continuity Criterion -- 2.4.2 Operator Norms -- 2.4.3 Exercises.
2.5 Homeomorphisms and Topological Properties -- 2.5.1 Equivalent Metrics -- 2.5.2 Exercises -- 2.6 Topologies and σ-Algebras -- 2.6.1 Order Topologies -- 2.6.2 Exercises -- 2.6.3 Pointers to Further Study -- 2.7 () Mazur-Ulam -- 2.7.1 Exercises -- 3 Completeness of the Classical Spaces -- 3.1 Coordinate Spaces and Normed Sequence Spaces -- 3.1.1 Completeness of Rn -- 3.1.2 Completeness of p -- 3.1.3 Exercises -- 3.2 Product Spaces -- 3.2.1 Finitely Many Factors -- 3.2.2 Infinitely Many Factors -- 3.2.3 The Space 2N+ and the Cantor Set -- 3.2.4 Subspaces of Complete Spaces -- 3.2.5 Exercises -- 3.3 Spaces of Continuous Functions -- 3.3.1 Uniform Convergence -- 3.3.2 Series in Normed Spaces -- 3.3.3 The Weierstrass M-Test -- 3.3.4 The Spaces C(R) and Cp(R) -- 3.3.5 Exercises -- 3.4 () Rearrangements -- 3.4.1 Vector Series -- 3.4.2 Exercises -- 3.4.3 Pointers to Further Study -- 3.5 () Invertible Operators -- 3.5.1 Fredholm Integral Equation -- 3.5.2 Exercises -- 3.5.3 Pointers to Further Study -- 3.6 () Tietze -- 3.6.1 Formulas for an Extension -- 3.6.2 Exercises -- 3.6.3 Pointers to Further Study -- 4 Compact Spaces -- 4.1 Sequentially Compact Spaces -- 4.1.1 Continuous Functions on Sequentially Compact Spaces -- 4.1.2 Bolzano-Weierstrass in Rn -- 4.1.3 Sequentially Compact Sets in Rn -- 4.1.4 Sequentially Compact Sets in Other Spaces -- 4.1.5 The Space C(M) -- 4.1.6 Exercises -- 4.2 The Correct Definition of Compactness -- 4.2.1 Thoughts About the Definition -- 4.2.2 Compact Spaces and Compact Sets -- 4.2.3 Continuous Functions on Compact Spaces -- 4.2.4 Uniform Continuity -- 4.2.5 Exercises -- 4.3 Equivalence of Compactness and Sequential Compactness -- 4.3.1 Relative Compactness -- 4.3.2 Local Compactness -- 4.3.3 Exercises -- 4.4 Finite Dimensional Normed Vector Spaces -- 4.4.1 Exercises -- 4.5 () Ascoli -- 4.5.1 Peano's Existence Theorem.
4.5.2 Exercises -- 4.5.3 Pointers to Further Study -- 5 Separable Spaces -- 5.1 Dense Subsets of a Metric Space -- 5.1.1 Defining a Vector-Valued Integral -- 5.1.2 Exercises -- 5.2 Separability -- 5.2.1 Second Countability -- 5.2.2 Exercises -- 5.3 () Weierstrass -- 5.3.1 Exercises -- 5.3.2 Pointers to Further Study -- 5.4 () Stone-Weierstrass -- 5.4.1 Exercises -- 5.4.2 Pointers to Further Study -- 6 Properties of Complete Spaces -- 6.1 Cantor's Nested Intersection Theorem -- Notes About Cantor's Theorem -- 6.1.1 Categories -- Thoughts About the Proof -- 6.1.2 Exercises -- 6.2 () Genericity -- 6.2.1 Exercises -- 6.2.2 Pointers to Further Study -- 6.3 () Nowhere Differentiability -- 6.3.1 Exercises -- 6.3.2 Pointers to Further Study -- 6.4 Fixed Points -- 6.4.1 Exercises -- 6.5 () Picard -- 6.5.1 Exercises -- 6.6 () Zeros -- 6.6.1 Exercises -- 6.6.2 Pointers to Further Study -- 6.7 Completion of a Metric Space -- 6.7.1 Other Ways to Complete a Metric Space -- 6.7.2 Exercises -- 7 Connected Spaces -- 7.1 Connectedness -- 7.1.1 Connected Sets -- 7.1.2 Rules for Connected Sets -- 7.1.3 Connected Subsets of R -- 7.1.4 Exercises -- 7.2 Continuous Mappings and Connectedness -- 7.2.1 Continuous Curves -- 7.2.2 Arcwise Connectedness -- 7.2.3 Exiting a Set -- 7.2.4 Exercises -- 7.3 Connected Components -- 7.3.1 Examples of Connected Components -- 7.3.2 Arcwise Connected Components -- 7.3.3 Exercises -- 7.4 () Peano -- 7.4.1 Exercises -- 7.4.2 Pointers to Further Study -- Afterword -- Index.
Record Nr. UNINA-9910553070403321
Magnus Robert  
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui