top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Compressed Sensing for Distributed Systems / / by Giulio Coluccia, Chiara Ravazzi, Enrico Magli
Compressed Sensing for Distributed Systems / / by Giulio Coluccia, Chiara Ravazzi, Enrico Magli
Autore Coluccia Giulio
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (104 p.)
Disciplina 681.2
Collana SpringerBriefs in Signal Processing
Soggetto topico Signal processing
Image processing
Speech processing systems
Computer communication systems
Calculus of variations
Signal, Image and Speech Processing
Computer Communication Networks
Calculus of Variations and Optimal Control; Optimization
ISBN 981-287-390-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Distributed Compressed Sensing -- Rate–Distortion Theory of Distributed Compressed Sensing -- Centralized Joint Recovery -- Distributed Recovery -- Conclusions.
Record Nr. UNINA-9910299827203321
Coluccia Giulio  
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Compressed Sensing for Privacy-Preserving Data Processing / / by Matteo Testa, Diego Valsesia, Tiziano Bianchi, Enrico Magli
Compressed Sensing for Privacy-Preserving Data Processing / / by Matteo Testa, Diego Valsesia, Tiziano Bianchi, Enrico Magli
Autore Testa Matteo
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (99 pages)
Disciplina 006.6
Collana SpringerBriefs in Signal Processing
Soggetto topico Signal processing
Image processing
Speech processing systems
Computer security
Calculus of variations
Data structures (Computer science)
Signal, Image and Speech Processing
Privacy
Calculus of Variations and Optimal Control; Optimization
Data Structures and Information Theory
ISBN 981-13-2279-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Compressed Sensing and Security -- Compressed Sensing as a Cryptosystem -- Privacy-preserving Embeddings -- Conclusion.
Record Nr. UNINA-9910350314503321
Testa Matteo  
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Graph spectral image processing / / edited by Gene Cheung, Enrico Magli
Graph spectral image processing / / edited by Gene Cheung, Enrico Magli
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , [2021]
Descrizione fisica 1 online resource (325 pages)
Disciplina 621.367
Soggetto topico Image processing
Graph theory
Spectral imaging
Soggetto genere / forma Electronic books.
ISBN 1-119-85081-9
1-119-85083-5
1-119-85082-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction to Graph Spectral Image Processing -- I.1. Introduction -- I.2. Graph definition -- I.3. Graph spectrum -- I.4. Graph variation operators -- I.5. Graph signal smoothness priors -- I.6. References -- Part 1. Fundamentals of Graph Signal Processing -- Chapter 1. Graph Spectral Filtering -- 1.1. Introduction -- 1.2. Review: filtering of time-domain signals -- 1.3. Filtering of graph signals -- 1.3.1. Vertex domain filtering -- 1.3.2. Spectral domain filtering -- 1.3.3. Relationship between graph spectral filtering and classical filtering -- 1.4. Edge-preserving smoothing of images as graph spectral filters -- 1.4. Edge-preserving smoothing of images as graph spectral filters -- 1.4.1. Early works -- 1.4.2. Edge-preserving smoothing -- 1.5. Multiple graph filters: graph filter banks -- 1.5.1. Framework -- 1.5.2. Perfect reconstruction condition -- 1.6. Fast computation -- 1.6.1. Subdivision -- 1.6.3. Precomputing GFT -- 1.6.4. Partial eigendecomposition -- 1.6.5. Polynomial approximation -- 1.6.6. Krylov subspace method -- 1.7. Conclusion -- 1.8. References -- Chapter 2. Graph Learning -- 2.1. Introduction -- 2.2. Literature review -- 2.2.1. Statistical models -- 2.2.2. Physically motivated models -- 2.3. Graph learning: a signal representation perspective -- 2.3.1. Models based on signal smoothness -- 2.3.2. Models based on spectral filtering of graph signals -- 2.3.3. Models based on causal dependencies on graphs -- 2.3.4. Connections with the broader literature -- 2.4. Applications of graph learning in image processing -- 2.5. Concluding remarks and future directions -- 2.6. References -- Chapter 3. Graph Neural Networks -- 3.1. Introduction -- 3.2. Spectral graph-convolutional layers -- 3.3. Spatial graph-convolutional layers -- 3.4. Concluding remarks.
3.5. References -- Part 2. Imaging Applications of Graph Signal Processing -- Chapter 4. Graph Spectral Image and Video Compression -- 4.1. Introduction -- 4.1.1. Basics of image and video compression -- 4.1.2. Literature review -- 4.1.3. Outline of the chapter -- 4.2. Graph-based models for image and video signals -- 4.2.1. Graph-based models for residuals of predicted signals -- 4.2.2. DCT/DSTs as GFTs and their relation to 1D models -- 4.2.3. Interpretation of graph weights for predictive transform coding -- 4.3. Graph spectral methods for compression -- 4.3.1. GL-GFT design -- 4.3.2. EA-GFT design -- 4.3.3. Empirical evaluation of GL-GFT and EA-GFT -- 4.4. Conclusion and potential future work -- 4.5. References -- Chapter 5. Graph Spectral 3D Image Compression -- 5.1. Introduction to 3D images -- 5.1.1. 3D image definition -- 5.1.2. Point clouds and meshes -- 5.1.3. Omnidirectional images -- 5.1.4. Light field images -- 5.1.5. Stereo/multi-view images -- 5.2. Graph-based 3D image coding: overview -- 5.3. Graph construction -- 5.3.1. Geometry-based approaches -- 5.3.2. Joint geometry and color-based approaches -- 5.3.3. Separable transforms -- 5.4. Concluding remarks -- 5.5. References -- Chapter 6. Graph Spectral Image Restoration -- 6.1. Introduction -- 6.1.1. A simple image degradation model -- 6.1.2. Restoration with signal priors -- 6.1.3. Restoration via filtering -- 6.1.4. GSP for image restoration -- 6.2. Discrete-domain methods -- 6.2.1. Non-local graph-based transform for depth image denoising -- 6.2.2. Doubly stochastic graph Laplacian -- 6.2.3. Reweighted graph total variation prior -- 6.2.4. Left eigenvectors of random walk graph Laplacian -- 6.2.5. Graph-based image filtering -- 6.3. Continuous-domain methods -- 6.3.1. Continuous-domain analysis of graph Laplacian regularization.
6.3.2. Low-dimensional manifold model for image restoration -- 6.3.3. LDMM as graph Laplacian regularization -- 6.4. Learning-based methods -- 6.4.1. CNN with GLR -- 6.4.2. CNN with graph wavelet filter -- 6.5. Concluding remarks -- 6.6. References -- Chapter 7. Graph Spectral Point Cloud Processing -- 7.1. Introduction -- 7.2. Graph and graph-signals in point cloud processing -- 7.3. Graph spectral methodologies for point cloud processing -- 7.3.1. Spectral-domain graph filtering for point clouds -- 7.3.2. Nodal-domain graph filtering for point clouds -- 7.3.3. Learning-based graph spectral methods for point clouds -- 7.4. Low-level point cloud processing -- 7.4.1. Point cloud denoising -- 7.4.2. Point cloud resampling -- 7.4.3. Datasets and evaluation metrics -- 7.5. High-level point cloud understanding -- 7.5.1. Data auto-encoding for point clouds -- 7.5.2. Transformation auto-encoding for point clouds -- 7.5.3. Applications of GraphTER in point clouds -- 7.5.4. Datasets and evaluation metrics -- 7.6. Summary and further reading -- 7.7. References -- Chapter 8. Graph Spectral Image Segmentation -- 8.1. Introduction -- 8.2. Pixel membership functions -- 8.2.1. Two-class problems -- 8.2.2. Multiple-class problems -- 8.2.3. Multiple images -- 8.3. Matrix properties -- 8.4. Graph cuts -- 8.4.1. The Mumford-Shah model -- 8.4.2. Graph cuts minimization -- 8.5. Summary -- 8.6. References -- Chapter 9. Graph Spectral Image Classification -- 9.1. Formulation of graph-based classification problems -- 9.1.1. Graph spectral classifiers with noiseless labels -- 9.1.2. Graph spectral classifiers with noisy labels -- 9.2. Toward practical graph classifier implementation -- 9.2.1. Graph construction -- 9.2.2. Experimental setup and analysis -- 9.3. Feature learning via deep neural network -- 9.3.1. Deep feature learning for graph construction.
9.3.2. Iterative graph construction -- 9.3.3. Toward practical implementation of deep feature learning -- 9.3.4. Analysis on iterative graph construction for robust classification -- 9.3.5. Graph spectrum visualization -- 9.3.6. Classification error rate comparison using insufficient training data -- 9.3.7. Classification error rate comparison using sufficient training data with label noise -- 9.4. Conclusion -- 9.5. References -- Chapter 10. Graph Neural Networks for Image Processing -- 10.1. Introduction -- 10.2. Supervised learning problems -- 10.2.1. Point cloud classification -- 10.2.2. Point cloud segmentation -- 10.2.3. Image denoising -- 10.3. Generative models for point clouds -- 10.3.1. Point cloud generation -- 10.3.2. Shape completion -- 10.4. Concluding remarks -- 10.5. References -- List of Authors -- Index -- EULA.
Record Nr. UNINA-9910555108603321
Hoboken, New Jersey : , : John Wiley & Sons, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Graph spectral image processing / / edited by Gene Cheung, Enrico Magli
Graph spectral image processing / / edited by Gene Cheung, Enrico Magli
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , [2021]
Descrizione fisica 1 online resource (325 pages)
Disciplina 621.367
Collana Sciences. Image. Compression, coding and protection of images and videos
Soggetto topico Image processing
Spectral imaging
Graph theory
ISBN 1-119-85081-9
1-119-85083-5
1-119-85082-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction to Graph Spectral Image Processing -- I.1. Introduction -- I.2. Graph definition -- I.3. Graph spectrum -- I.4. Graph variation operators -- I.5. Graph signal smoothness priors -- I.6. References -- Part 1. Fundamentals of Graph Signal Processing -- Chapter 1. Graph Spectral Filtering -- 1.1. Introduction -- 1.2. Review: filtering of time-domain signals -- 1.3. Filtering of graph signals -- 1.3.1. Vertex domain filtering -- 1.3.2. Spectral domain filtering -- 1.3.3. Relationship between graph spectral filtering and classical filtering -- 1.4. Edge-preserving smoothing of images as graph spectral filters -- 1.4. Edge-preserving smoothing of images as graph spectral filters -- 1.4.1. Early works -- 1.4.2. Edge-preserving smoothing -- 1.5. Multiple graph filters: graph filter banks -- 1.5.1. Framework -- 1.5.2. Perfect reconstruction condition -- 1.6. Fast computation -- 1.6.1. Subdivision -- 1.6.3. Precomputing GFT -- 1.6.4. Partial eigendecomposition -- 1.6.5. Polynomial approximation -- 1.6.6. Krylov subspace method -- 1.7. Conclusion -- 1.8. References -- Chapter 2. Graph Learning -- 2.1. Introduction -- 2.2. Literature review -- 2.2.1. Statistical models -- 2.2.2. Physically motivated models -- 2.3. Graph learning: a signal representation perspective -- 2.3.1. Models based on signal smoothness -- 2.3.2. Models based on spectral filtering of graph signals -- 2.3.3. Models based on causal dependencies on graphs -- 2.3.4. Connections with the broader literature -- 2.4. Applications of graph learning in image processing -- 2.5. Concluding remarks and future directions -- 2.6. References -- Chapter 3. Graph Neural Networks -- 3.1. Introduction -- 3.2. Spectral graph-convolutional layers -- 3.3. Spatial graph-convolutional layers -- 3.4. Concluding remarks.
3.5. References -- Part 2. Imaging Applications of Graph Signal Processing -- Chapter 4. Graph Spectral Image and Video Compression -- 4.1. Introduction -- 4.1.1. Basics of image and video compression -- 4.1.2. Literature review -- 4.1.3. Outline of the chapter -- 4.2. Graph-based models for image and video signals -- 4.2.1. Graph-based models for residuals of predicted signals -- 4.2.2. DCT/DSTs as GFTs and their relation to 1D models -- 4.2.3. Interpretation of graph weights for predictive transform coding -- 4.3. Graph spectral methods for compression -- 4.3.1. GL-GFT design -- 4.3.2. EA-GFT design -- 4.3.3. Empirical evaluation of GL-GFT and EA-GFT -- 4.4. Conclusion and potential future work -- 4.5. References -- Chapter 5. Graph Spectral 3D Image Compression -- 5.1. Introduction to 3D images -- 5.1.1. 3D image definition -- 5.1.2. Point clouds and meshes -- 5.1.3. Omnidirectional images -- 5.1.4. Light field images -- 5.1.5. Stereo/multi-view images -- 5.2. Graph-based 3D image coding: overview -- 5.3. Graph construction -- 5.3.1. Geometry-based approaches -- 5.3.2. Joint geometry and color-based approaches -- 5.3.3. Separable transforms -- 5.4. Concluding remarks -- 5.5. References -- Chapter 6. Graph Spectral Image Restoration -- 6.1. Introduction -- 6.1.1. A simple image degradation model -- 6.1.2. Restoration with signal priors -- 6.1.3. Restoration via filtering -- 6.1.4. GSP for image restoration -- 6.2. Discrete-domain methods -- 6.2.1. Non-local graph-based transform for depth image denoising -- 6.2.2. Doubly stochastic graph Laplacian -- 6.2.3. Reweighted graph total variation prior -- 6.2.4. Left eigenvectors of random walk graph Laplacian -- 6.2.5. Graph-based image filtering -- 6.3. Continuous-domain methods -- 6.3.1. Continuous-domain analysis of graph Laplacian regularization.
6.3.2. Low-dimensional manifold model for image restoration -- 6.3.3. LDMM as graph Laplacian regularization -- 6.4. Learning-based methods -- 6.4.1. CNN with GLR -- 6.4.2. CNN with graph wavelet filter -- 6.5. Concluding remarks -- 6.6. References -- Chapter 7. Graph Spectral Point Cloud Processing -- 7.1. Introduction -- 7.2. Graph and graph-signals in point cloud processing -- 7.3. Graph spectral methodologies for point cloud processing -- 7.3.1. Spectral-domain graph filtering for point clouds -- 7.3.2. Nodal-domain graph filtering for point clouds -- 7.3.3. Learning-based graph spectral methods for point clouds -- 7.4. Low-level point cloud processing -- 7.4.1. Point cloud denoising -- 7.4.2. Point cloud resampling -- 7.4.3. Datasets and evaluation metrics -- 7.5. High-level point cloud understanding -- 7.5.1. Data auto-encoding for point clouds -- 7.5.2. Transformation auto-encoding for point clouds -- 7.5.3. Applications of GraphTER in point clouds -- 7.5.4. Datasets and evaluation metrics -- 7.6. Summary and further reading -- 7.7. References -- Chapter 8. Graph Spectral Image Segmentation -- 8.1. Introduction -- 8.2. Pixel membership functions -- 8.2.1. Two-class problems -- 8.2.2. Multiple-class problems -- 8.2.3. Multiple images -- 8.3. Matrix properties -- 8.4. Graph cuts -- 8.4.1. The Mumford-Shah model -- 8.4.2. Graph cuts minimization -- 8.5. Summary -- 8.6. References -- Chapter 9. Graph Spectral Image Classification -- 9.1. Formulation of graph-based classification problems -- 9.1.1. Graph spectral classifiers with noiseless labels -- 9.1.2. Graph spectral classifiers with noisy labels -- 9.2. Toward practical graph classifier implementation -- 9.2.1. Graph construction -- 9.2.2. Experimental setup and analysis -- 9.3. Feature learning via deep neural network -- 9.3.1. Deep feature learning for graph construction.
9.3.2. Iterative graph construction -- 9.3.3. Toward practical implementation of deep feature learning -- 9.3.4. Analysis on iterative graph construction for robust classification -- 9.3.5. Graph spectrum visualization -- 9.3.6. Classification error rate comparison using insufficient training data -- 9.3.7. Classification error rate comparison using sufficient training data with label noise -- 9.4. Conclusion -- 9.5. References -- Chapter 10. Graph Neural Networks for Image Processing -- 10.1. Introduction -- 10.2. Supervised learning problems -- 10.2.1. Point cloud classification -- 10.2.2. Point cloud segmentation -- 10.2.3. Image denoising -- 10.3. Generative models for point clouds -- 10.3.1. Point cloud generation -- 10.3.2. Shape completion -- 10.4. Concluding remarks -- 10.5. References -- List of Authors -- Index -- EULA.
Record Nr. UNINA-9910830490103321
Hoboken, New Jersey : , : John Wiley & Sons, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui