Data Science for IoT Engineers : A Systems Analytics Approach |
Autore | Madhavan P. G |
Pubbl/distr/stampa | Bloomfield : , : Mercury Learning & Information, , 2021 |
Descrizione fisica | 1 online resource (170 pages) |
Disciplina | 006.312024004678 |
Soggetto topico | COMPUTERS / Desktop Applications / Presentation Software |
Soggetto non controllato |
IOT
MATLAB computer science data analytics engineering mathematics physics |
ISBN |
1-68392-640-4
1-68392-641-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- About the Author -- PART I Machine Learning from Multiple Perspectives -- CHAPTER 1 Overview of Data Science -- CHAPTER 2 Introduction to Machine Learning -- CHAPTER 3 Systems Theory, Linear Algebra, and Analytics Basics -- CHAPTER 4 “Modern” Machine Learning -- PART II Systems Analytics -- CHAPTER 5 Systems Theory Foundations of Machine Learning -- CHAPTER 6 State Space Model and Bayes Filter -- CHAPTER 7 The Kalman Filter for Adaptive Machine Learning -- CHAPTER 8 The Need for Dynamical Machine Learning: The Bayesian Exact Recursive Estimation -- CHAPTER 9 Digital Twins -- Epilogue A New Random Field Theory -- Index |
Record Nr. | UNINA-9910795555703321 |
Madhavan P. G
![]() |
||
Bloomfield : , : Mercury Learning & Information, , 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Data Science for IoT Engineers : A Systems Analytics Approach |
Autore | Madhavan P. G |
Pubbl/distr/stampa | Bloomfield : , : Mercury Learning & Information, , 2021 |
Descrizione fisica | 1 online resource (170 pages) |
Disciplina | 006.312024004678 |
Soggetto topico | COMPUTERS / Desktop Applications / Presentation Software |
Soggetto non controllato |
IOT
MATLAB computer science data analytics engineering mathematics physics |
ISBN |
1-68392-640-4
1-68392-641-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- About the Author -- PART I Machine Learning from Multiple Perspectives -- CHAPTER 1 Overview of Data Science -- CHAPTER 2 Introduction to Machine Learning -- CHAPTER 3 Systems Theory, Linear Algebra, and Analytics Basics -- CHAPTER 4 “Modern” Machine Learning -- PART II Systems Analytics -- CHAPTER 5 Systems Theory Foundations of Machine Learning -- CHAPTER 6 State Space Model and Bayes Filter -- CHAPTER 7 The Kalman Filter for Adaptive Machine Learning -- CHAPTER 8 The Need for Dynamical Machine Learning: The Bayesian Exact Recursive Estimation -- CHAPTER 9 Digital Twins -- Epilogue A New Random Field Theory -- Index |
Record Nr. | UNINA-9910810050903321 |
Madhavan P. G
![]() |
||
Bloomfield : , : Mercury Learning & Information, , 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|