Applying quantitative bias analysis to epidemiologic data / / Matthew P. Fox, Richard F. MacLehose, and Timothy L. Lash |
Autore | Lash Timothy L. |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (475 pages) |
Disciplina | 614.4072 |
Collana | Statistics for Biology and Health |
Soggetto topico |
Epidemiology - Research
Social sciences - Methodology Epidemiologia Estadística matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-82673-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Contents -- Chapter 1: Introduction, Objectives, and an Alternative -- Introduction: Biases in Health Research -- Statistical Inference in Public Health Research -- The Treatment of Uncertainty in Nonrandomized Research -- When Bias Analysis Will Be Most Useful -- Judgments Under Uncertainty -- The Dual-Process Model of Cognition -- Anchoring and Adjustment -- Overconfidence -- Failure to Account for the Base-Rate -- Conclusion -- References -- Chapter 2: A Guide to Implementing Quantitative Bias Analysis -- Introduction -- Reducing Error -- Reducing Error by Design -- Reducing Error in the Analysis -- Quantifying Error -- Evaluating the Potential Value of Quantitative Bias Analysis? -- Planning for Bias Analysis -- Creating a Data Collection Plan for Bias Analysis -- Creating an Analytic Plan for a Bias Analysis -- Type of Data: Record-Level Versus Summary -- Type of Bias Analysis -- Order of Bias Analysis Adjustments -- Bias Analysis Techniques -- Simple Bias Analysis -- Multidimensional Bias Analysis -- Probabilistic Bias Analysis -- Multiple Bias Modeling -- Direct Bias Modeling and Missing Data Methods -- Bayesian Bias Analysis -- Assigning Values and Distributions to Bias Parameters -- Directed Acyclic Graphs -- Conclusion -- References -- Chapter 3: Data Sources for Bias Analysis -- Bias Parameters -- Internal Data Sources -- Selection Bias -- Uncontrolled Confounding -- Information Bias -- Design of Internal Validation Studies -- Limitations of Internal Validation Studies -- External Data Sources -- Selection Bias -- Unmeasured Confounder -- Information Bias -- Expert Opinion -- Summary -- References -- Chapter 4: Selection Bias -- Introduction -- Definitions and Terms -- Conceptual -- Depicting Selection Bias Using Causal Graphs -- Design Considerations -- Bias Analysis.
Motivation for Bias Analysis -- Sources of Data -- Simple Bias-Adjustment for Differential Initial Participation -- Example -- Introduction to Bias Analysis -- Bias Analysis by Projecting the Exposed Proportion Among Nonparticipants -- Bias Analysis Using Selection Proportions -- Bias Analysis Using Inverse Probability of Participation Weighting -- Simple Bias-Adjustment for Differential Loss-to-Follow-up -- Example -- Bias Analysis by Modeling Outcomes -- Bias Analysis by Inverse Probability of Attrition Weighting -- Multidimensional Bias Analysis for Selection Bias -- Example -- References -- Chapter 5: Uncontrolled Confounders -- Introduction -- Key Concepts -- Definitions -- Motivation for Bias Analysis -- Data Sources -- Introduction to Simple Bias Analysis -- Approach -- Introduction to the Example -- Bias Parameters -- Implementation of Simple Bias Analysis -- Ratio Measures -- Example -- Difference Measures -- Person-time Designs -- Unmeasured Confounder in the Presence of Effect Measure Modification -- Polytomous Confounders -- Multidimensional Bias Analysis for Unmeasured Confounding -- Example -- Bounding the Bias Limits of an Unmeasured Confounding -- Analytic Approach -- The E-Value and G-Value -- Signed Directed Acyclic Graphs to Estimate the Direction of Bias -- References -- Chapter 6: Misclassification -- Introduction -- Definitions and Terms -- Differential vs. Nondifferential Misclassification -- Dependent vs. Independent Misclassification -- Directed Acyclic Graphs and Misclassification -- Calculating Classification Bias Parameters from Validation Data -- Sources of Data -- Bias Analysis of Exposure Misclassification -- Bias-Adjusting for Exposure Misclassification Using Sensitivity and Specificity: Nondifferential and Independent Errors -- Bias-Adjusting for Exposure Misclassification Using Predictive Values. Bias-Adjustment for Nondifferential Outcome Misclassification Using Positive Predictive Values for the Risk Ratio Measure of A... -- Bias-Adjustments Using Sensitivity and Specificity: Differential Independent Errors -- Bias-Adjustments Using Sensitivity and Specificity: Internal Validation Data -- Overreliance on Nondifferential Misclassification Biasing Toward the Null -- Disease Misclassification -- Bias-Adjustments with Sensitivity and Specificity: Nondifferential and Independent Errors -- Disease Misclassification in Case-Control Studies -- Overreliance on Nondifferential Misclassification Biasing Toward the Null -- Covariate Misclassification -- Bias-Adjustments with Sensitivity and Specificity: Nondifferential and Differential Misclassification with Independent Errors -- Overreliance on Nondifferential Misclassification of Covariates Biasing Toward the Null -- Dependent Misclassification -- Matrix Method for Misclassification Adjustment -- Multidimensional Bias Analysis for Misclassification -- Limitations -- Negative Expected Cell Frequencies -- Other Considerations -- References -- Chapter 7: Preparing for Probabilistic Bias Analysis -- Introduction -- Preparing for Probabilistic Bias Analysis -- Statistical Software for Probabilistic Bias Analysis -- Summary Level Versus Record Level Probabilistic Bias Analysis -- Describing Uncertainty in the Bias Parameters -- Probability Distributions -- Uniform Distribution -- Generalized Method for Sampling from Distributions -- Trapezoidal Distribution -- Triangular Distribution -- Normal Distribution -- Beta Distribution -- Bernoulli and Binomial Distributions -- Other Probability Distributions -- Sensitivity to Chosen Distributions -- Correlated Distributions -- Conclusions -- References -- Chapter 8: Probabilistic Bias Analysis for Simulation of Summary Level Data -- Introduction. Analytic Approach for Summary Level Probabilistic Bias Analysis -- Exposure Misclassification Implementation -- Step 1: Identify the Source of Bias -- Step 2: Select the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Step 4c: Incorporate Conventional Random Error by Sampling Summary Statistics -- Step 4c (Alternate): Resample the Prevalence of Misclassification Adjusted Exposure -- Step 5: Save the Bias-Adjusted Estimate and Repeat Steps 4a-c -- Step 6: Summarize the Bias-Adjusted Estimates with a Frequency Distribution that Yields a Central Tendency and Simulation Inte... -- Misclassification Implementation: Predictive Values -- Misclassification Implementation: Predictive Values - Alternative -- Misclassification of Outcomes and Confounders -- Uncontrolled Confounding Implementation -- Step 1: Identify the Source of Bias -- Step 2: Identify the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Step 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Confounding Implementation Alternative: Relative Risk Due to Confounding -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions. Step 4b: Generate Bias-Adjusted Results Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Step 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Selection Bias Implementation -- An Example of Probabilistic Bias Analysis in the Presence of Substantial Source Population Data -- Step 1: Identify the Source of Bias -- Step 2: Identify the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Steps 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Selection Bias Adjustment Using Selection Probabilities -- Step 1: Identify the Source of Bias -- Step 2: Identify the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Steps 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Computing Issues with Summary Level Probabilistic Bias Analysis -- Bootstrapping -- Impossible Values for Bias Parameters and Model Diagnostic Plots -- Conclusions -- Appendix: Sampling Models for Exposure Misclassification -- References -- Chapter 9: Probabilistic Bias Analysis for Simulation of Record-Level Data -- Introduction -- Exposure Misclassification Implementation -- Step 1: Identify the Source of Bias -- Step 2: Select the Bias Parameters. Step 3: Assign Probability Distributions to Each Bias Parameter. |
Record Nr. | UNINA-9910556891103321 |
Lash Timothy L. | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Applying quantitative bias analysis to epidemiologic data / / Matthew P. Fox, Richard F. MacLehose, and Timothy L. Lash |
Autore | Lash Timothy L. |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (475 pages) |
Disciplina | 614.4072 |
Collana | Statistics for Biology and Health |
Soggetto topico |
Epidemiology - Research
Social sciences - Methodology Epidemiologia Estadística matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-82673-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Contents -- Chapter 1: Introduction, Objectives, and an Alternative -- Introduction: Biases in Health Research -- Statistical Inference in Public Health Research -- The Treatment of Uncertainty in Nonrandomized Research -- When Bias Analysis Will Be Most Useful -- Judgments Under Uncertainty -- The Dual-Process Model of Cognition -- Anchoring and Adjustment -- Overconfidence -- Failure to Account for the Base-Rate -- Conclusion -- References -- Chapter 2: A Guide to Implementing Quantitative Bias Analysis -- Introduction -- Reducing Error -- Reducing Error by Design -- Reducing Error in the Analysis -- Quantifying Error -- Evaluating the Potential Value of Quantitative Bias Analysis? -- Planning for Bias Analysis -- Creating a Data Collection Plan for Bias Analysis -- Creating an Analytic Plan for a Bias Analysis -- Type of Data: Record-Level Versus Summary -- Type of Bias Analysis -- Order of Bias Analysis Adjustments -- Bias Analysis Techniques -- Simple Bias Analysis -- Multidimensional Bias Analysis -- Probabilistic Bias Analysis -- Multiple Bias Modeling -- Direct Bias Modeling and Missing Data Methods -- Bayesian Bias Analysis -- Assigning Values and Distributions to Bias Parameters -- Directed Acyclic Graphs -- Conclusion -- References -- Chapter 3: Data Sources for Bias Analysis -- Bias Parameters -- Internal Data Sources -- Selection Bias -- Uncontrolled Confounding -- Information Bias -- Design of Internal Validation Studies -- Limitations of Internal Validation Studies -- External Data Sources -- Selection Bias -- Unmeasured Confounder -- Information Bias -- Expert Opinion -- Summary -- References -- Chapter 4: Selection Bias -- Introduction -- Definitions and Terms -- Conceptual -- Depicting Selection Bias Using Causal Graphs -- Design Considerations -- Bias Analysis.
Motivation for Bias Analysis -- Sources of Data -- Simple Bias-Adjustment for Differential Initial Participation -- Example -- Introduction to Bias Analysis -- Bias Analysis by Projecting the Exposed Proportion Among Nonparticipants -- Bias Analysis Using Selection Proportions -- Bias Analysis Using Inverse Probability of Participation Weighting -- Simple Bias-Adjustment for Differential Loss-to-Follow-up -- Example -- Bias Analysis by Modeling Outcomes -- Bias Analysis by Inverse Probability of Attrition Weighting -- Multidimensional Bias Analysis for Selection Bias -- Example -- References -- Chapter 5: Uncontrolled Confounders -- Introduction -- Key Concepts -- Definitions -- Motivation for Bias Analysis -- Data Sources -- Introduction to Simple Bias Analysis -- Approach -- Introduction to the Example -- Bias Parameters -- Implementation of Simple Bias Analysis -- Ratio Measures -- Example -- Difference Measures -- Person-time Designs -- Unmeasured Confounder in the Presence of Effect Measure Modification -- Polytomous Confounders -- Multidimensional Bias Analysis for Unmeasured Confounding -- Example -- Bounding the Bias Limits of an Unmeasured Confounding -- Analytic Approach -- The E-Value and G-Value -- Signed Directed Acyclic Graphs to Estimate the Direction of Bias -- References -- Chapter 6: Misclassification -- Introduction -- Definitions and Terms -- Differential vs. Nondifferential Misclassification -- Dependent vs. Independent Misclassification -- Directed Acyclic Graphs and Misclassification -- Calculating Classification Bias Parameters from Validation Data -- Sources of Data -- Bias Analysis of Exposure Misclassification -- Bias-Adjusting for Exposure Misclassification Using Sensitivity and Specificity: Nondifferential and Independent Errors -- Bias-Adjusting for Exposure Misclassification Using Predictive Values. Bias-Adjustment for Nondifferential Outcome Misclassification Using Positive Predictive Values for the Risk Ratio Measure of A... -- Bias-Adjustments Using Sensitivity and Specificity: Differential Independent Errors -- Bias-Adjustments Using Sensitivity and Specificity: Internal Validation Data -- Overreliance on Nondifferential Misclassification Biasing Toward the Null -- Disease Misclassification -- Bias-Adjustments with Sensitivity and Specificity: Nondifferential and Independent Errors -- Disease Misclassification in Case-Control Studies -- Overreliance on Nondifferential Misclassification Biasing Toward the Null -- Covariate Misclassification -- Bias-Adjustments with Sensitivity and Specificity: Nondifferential and Differential Misclassification with Independent Errors -- Overreliance on Nondifferential Misclassification of Covariates Biasing Toward the Null -- Dependent Misclassification -- Matrix Method for Misclassification Adjustment -- Multidimensional Bias Analysis for Misclassification -- Limitations -- Negative Expected Cell Frequencies -- Other Considerations -- References -- Chapter 7: Preparing for Probabilistic Bias Analysis -- Introduction -- Preparing for Probabilistic Bias Analysis -- Statistical Software for Probabilistic Bias Analysis -- Summary Level Versus Record Level Probabilistic Bias Analysis -- Describing Uncertainty in the Bias Parameters -- Probability Distributions -- Uniform Distribution -- Generalized Method for Sampling from Distributions -- Trapezoidal Distribution -- Triangular Distribution -- Normal Distribution -- Beta Distribution -- Bernoulli and Binomial Distributions -- Other Probability Distributions -- Sensitivity to Chosen Distributions -- Correlated Distributions -- Conclusions -- References -- Chapter 8: Probabilistic Bias Analysis for Simulation of Summary Level Data -- Introduction. Analytic Approach for Summary Level Probabilistic Bias Analysis -- Exposure Misclassification Implementation -- Step 1: Identify the Source of Bias -- Step 2: Select the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Step 4c: Incorporate Conventional Random Error by Sampling Summary Statistics -- Step 4c (Alternate): Resample the Prevalence of Misclassification Adjusted Exposure -- Step 5: Save the Bias-Adjusted Estimate and Repeat Steps 4a-c -- Step 6: Summarize the Bias-Adjusted Estimates with a Frequency Distribution that Yields a Central Tendency and Simulation Inte... -- Misclassification Implementation: Predictive Values -- Misclassification Implementation: Predictive Values - Alternative -- Misclassification of Outcomes and Confounders -- Uncontrolled Confounding Implementation -- Step 1: Identify the Source of Bias -- Step 2: Identify the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Step 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Confounding Implementation Alternative: Relative Risk Due to Confounding -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions. Step 4b: Generate Bias-Adjusted Results Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Step 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Selection Bias Implementation -- An Example of Probabilistic Bias Analysis in the Presence of Substantial Source Population Data -- Step 1: Identify the Source of Bias -- Step 2: Identify the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Steps 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Selection Bias Adjustment Using Selection Probabilities -- Step 1: Identify the Source of Bias -- Step 2: Identify the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Steps 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Computing Issues with Summary Level Probabilistic Bias Analysis -- Bootstrapping -- Impossible Values for Bias Parameters and Model Diagnostic Plots -- Conclusions -- Appendix: Sampling Models for Exposure Misclassification -- References -- Chapter 9: Probabilistic Bias Analysis for Simulation of Record-Level Data -- Introduction -- Exposure Misclassification Implementation -- Step 1: Identify the Source of Bias -- Step 2: Select the Bias Parameters. Step 3: Assign Probability Distributions to Each Bias Parameter. |
Record Nr. | UNISA-996466557403316 |
Lash Timothy L. | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|