Advances in Image and Graphics Technologies : 10th Chinese Conference, IGTA 2015, Beijing, China, June 19-20, 2015, Proceedings / / edited by Tieniu Tan, Qiuqi Ruan, Shengjin Wang, Huimin Ma, Kaichang Di |
Edizione | [1st ed. 2015.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2015 |
Descrizione fisica | 1 online resource (XII, 456 p. 270 illus.) |
Disciplina | 006.6 |
Collana | Communications in Computer and Information Science |
Soggetto topico |
Optical data processing
Pattern perception Artificial intelligence Computer graphics |
ISBN | 3-662-47791-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Image processing technology -- Image analysis und understanding -- Computer vision and pattern recognition -- Big data mining -- Computer graphics and VR -- Image technology application. |
Record Nr. | UNINA-9910299243203321 |
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Image and Graphics Technologies : Chinese Conference, IGTA 2014, Beijing, China, June 19-20, 2014. Proceedings / / edited by Tieniu Tan, Qiuqi Ruan, Shengjin Wang, Huimin Ma, Kaiqi Huang |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014 |
Descrizione fisica | 1 online resource (X, 360 p. 249 illus.) |
Disciplina | 006.6 |
Collana | Communications in Computer and Information Science |
Soggetto topico |
Optical data processing
Artificial intelligence Computers Coding theory Information theory Computer simulation |
ISBN | 3-662-45498-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Image processing and graphics and related topics -- Object detection -- Pattern recognition -- Object tracking -- Classification -- Image segmentation -- Reconstruction. |
Record Nr. | UNINA-9910298966803321 |
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Image and Graphics Technologies : Chinese Conference, IGTA 2013, Beijing, China, April 2-3, 2013. Proceedings / / edited by Tieniu Tan, Qiuqi Ruan, Xilin Chen, Huimin Ma, Liang Wang |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 |
Descrizione fisica | 1 online resource (XII, 340 p. 196 illus.) |
Disciplina |
006.6
006.37 |
Collana | Communications in Computer and Information Science |
Soggetto topico |
Optical data processing
Pattern perception Computer graphics |
Soggetto genere / forma | Conference papers and proceedings. |
Soggetto non controllato |
Graphics technologies
IGTA |
ISBN | 3-642-37149-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Real-Time Non-invasive Imaging of Subcutaneous Blood Vessels -- The Electronic Countermeasures Optimization Based on PCA and Multiple Regression Analysis -- A Digital Watermarking Algorithm Based on EHD Image Feature Analysis -- TLD Based Visual Target Tracking for Planetary Rover Exploration -- Ocean Surface Rendering Using Shader Technologies -- The ART2 Neural Network Based on the Adaboost Rough Classification -- An Unsymmetrical Diamond Search Algorithm for H.264/AVC Motion Estimation -- A New Fusion Method of Palmprint and Palmvein -- A Fatigue Testing Method Based on Machine Vision. |
Record Nr. | UNINA-9910437572203321 |
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Pattern recognition and computer vision . Part III : 4th Chinese Conference, PRCV 2021, Beijing, China, October 29-November 1, 2021, Proceedings / / Huimin Ma [and seven others] (editors) |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , 2022 |
Descrizione fisica | 1 online resource (648 pages) |
Disciplina | 006.4 |
Collana | Lecture notes in computer science |
Soggetto topico |
Pattern recognition systems
Computer vision |
ISBN | 3-030-88010-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part III -- Low-Level Vision and Image Processing -- SaliencyBERT: Recurrent Attention Network for Target-Oriented Multimodal Sentiment Classification -- 1 Introduction -- 2 Related Work -- 3 Proposed Model -- 3.1 Task Definition -- 3.2 Recurrent Attention Network -- 4 Experiments -- 4.1 Experiment Settings -- 4.2 Results and Analysis -- 5 Conclusion -- References -- Latency-Constrained Spatial-Temporal Aggregated Architecture Search for Video Deraining -- 1 Introduction -- 2 The Proposed Method -- 2.1 Spatial-Temporal Aggregated Architecture -- 2.2 Architecture Search -- 3 Experimental Results -- 3.1 Experiment Preparation -- 3.2 Running Time Evaluation -- 3.3 Quantitative Comparison -- 3.4 Qualitative Comparison -- 3.5 Ablation Study -- 4 Conclusions -- References -- Semantic-Driven Context Aggregation Network for Underwater Image Enhancement -- 1 Introduction -- 2 Method -- 2.1 The Overall Architecture -- 2.2 Semantic Feature Extractor -- 2.3 Multi-scale Feature Transformation Module -- 2.4 Context Aggregation Enhancement Network and Loss Function -- 3 Experiments -- 3.1 Experimental Setup -- 3.2 Comparison with the State-of-the-Arts -- 3.3 Ablation Study -- 3.4 Application on Salient Object Detection -- 4 Conclusion -- References -- A Multi-resolution Medical Image Fusion Network with Iterative Back-Projection -- 1 Introduction -- 2 Proposed Approach -- 2.1 Overall Framework -- 2.2 Network Architecture -- 2.3 Loss Function -- 3 Experiments -- 3.1 Dataset and Training Details -- 3.2 Results and Analysis of IBPNet -- 4 Conclusions -- References -- Multi-level Discriminator and Wavelet Loss for Image Inpainting with Large Missing Area -- 1 Introduction -- 2 Related Work -- 2.1 Image Inpainting -- 2.2 Adversarial Training -- 3 Our Approach -- 3.1 Multi-level Discriminator -- 3.2 Wavelet Loss.
4 Experiments -- 4.1 Experimental Settings -- 4.2 Performance Evaluation -- 4.3 Ablation Study -- 5 Conclusion -- References -- 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement -- 1 Introduction -- 2 Related Work -- 2.1 Low-Light Image Enhancement -- 2.2 Low-Light Video Enhancement -- 3 Method -- 3.1 Problem Formulation -- 3.2 Overview of the Pipeline -- 3.3 RSTAB Module -- 3.4 Unet Architecture with Global Projection -- 4 Experiment -- 4.1 Experimental Setting -- 4.2 Comparison with State-of-the-art Methods -- 4.3 Ablation Study -- 5 Conclusion -- References -- Single Image Specular Highlight Removal on Natural Scenes -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 Scene Illumination Evaluation -- 3.2 Smooth Feature Extraction -- 3.3 Coefficient Estimation and Highlight Removal -- 4 Experiments -- 4.1 Quantitative Comparison on Laboratory Images -- 4.2 Visual Effect Comparison on Natural Scene Images -- 4.3 Discussion of Important Parameters -- 5 Conclusion -- References -- Document Image Binarization Using Visibility Detection and Point Cloud Segmentation -- 1 Introduction -- 2 TPO(Target-Point Occlusion) -- 2.1 Point Cloud Transformation -- 2.2 Convex Hull -- 3 Algorithm -- 3.1 Binarization -- 3.2 Unshadow Binarization -- 4 Experiment -- 5 Conclusion -- References -- LF-MAGNet: Learning Mutual Attention Guidance of Sub-Aperture Images for Light Field Image Super-Resolution -- 1 Introduction -- 2 Related Work -- 2.1 Light Field Image Super-Resolution -- 2.2 Visual Attention Mechanism -- 3 Proposed Method -- 3.1 Shallow Feature Extraction -- 3.2 Mutual Attention Guidance -- 3.3 LF Image Reconstruction -- 4 Experiment -- 4.1 Dataset and Implementation Details -- 4.2 Ablation Studies -- 4.3 Comparisons with the State-of-The-Arts -- 5 Conclusion -- References. Infrared Small Target Detection Based on Weighted Variation Coefficient Local Contrast Measure -- 1 Introduction -- 2 The Proposed Algorithm -- 2.1 Variation Coefficient Local Contrast Measure -- 2.2 Weighted Variation Coefficient Local Contrast Measure -- 2.3 Target Detection -- 3 Experimental Results -- 3.1 Enhancement Performance Comparison -- 3.2 Detection Performance Comparison -- 4 Conclusion -- References -- Scale-Aware Distillation Network for Lightweight Image Super-Resolution -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Network Architecture -- 3.2 Scale-Aware Distillation Block -- 3.3 Comparisons with Other Information Distillation Methods -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Ablation Study -- 4.3 Comparisons with the State-of-the-Arts -- 5 Conclusion -- References -- Deep Multi-Illumination Fusion for Low-Light Image Enhancement -- 1 Introduction -- 2 Deep Multi-Illumination Fusion -- 2.1 Network Structure -- 2.2 Loss Function -- 3 Experimental Results -- 3.1 Implementation Details -- 3.2 Performance Evaluation -- 3.3 Ablation Analysis -- 3.4 Object Instance Segmentation -- 4 Conclusion -- References -- Relational Attention with Textual Enhanced Transformer for Image Captioning -- 1 Introduction -- 2 Related Work -- 2.1 Relationship Exploration -- 2.2 Transformer Architecture -- 3 The Proposed Approach -- 3.1 Relation Module -- 3.2 Attention Module -- 3.3 Decoder Module -- 3.4 Training and Objectives -- 4 Experiments -- 4.1 Datasets and Evaluation Metrics -- 4.2 Implementation Details -- 4.3 Ablation Study -- 4.4 Comparison with State-of-the-Art -- 5 Conclusion -- References -- Non-local Network Routing for Perceptual Image Super-Resolution -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Non-local Network Routing -- 3.2 Model Learning -- 4 Experiments -- 4.1 Evaluation Dataset and Metric. 4.2 Implementation Details -- 4.3 Derived Architecture -- 4.4 Comparison with State-of-the-Art Methods -- 5 Conclusion -- References -- Multi-focus Image Fusion with Cooperative Image Multiscale Decomposition -- 1 Introduction -- 2 Cooperative Image Multiscale Decomposition Based MGF -- 2.1 Mutually Guided Filter -- 2.2 Cooperative Image Multiscale Decomposition -- 3 Image Fusion with CIMD -- 3.1 Base Layers Fusion -- 3.2 Detailed Layers Fusion -- 3.3 Reconstruction -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Comparison to Classical Fusion Method -- 5 Conclusions -- References -- An Enhanced Multi-frequency Learned Image Compression Method -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 Formulation of Multi-frequency Learned Compression Models -- 3.2 Channel Attention Scheme -- 3.3 Decoder-Side Enhancement -- 4 Experiment Results -- 4.1 Parameter Description -- 4.2 Results Evaluation -- 5 Conclusion -- References -- Noise Map Guided Inpainting Network for Low-Light Image Enhancement -- 1 Introduction -- 2 Related Works -- 2.1 Low-Light Image Enhancement -- 2.2 Image Inpainting -- 3 Method -- 3.1 Stage I: Decomposition -- 3.2 Stage II: Restoration -- 4 Experiment -- 4.1 Implementation Details -- 4.2 Results and Analysis -- 4.3 Ablation Study -- 5 Conclusion -- References -- FIE-GAN: Illumination Enhancement Network for Face Recognition -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 Architecture -- 3.2 Loss Function -- 3.3 Deployment in Face Recognition -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Visual Perception Results -- 4.3 Face Recognition Results -- 4.4 Ablation Study -- 5 Conclusion -- References -- Illumination-Aware Image Quality Assessment for Enhanced Low-Light Image -- 1 Introduction -- 2 Illumination-Aware Quality Assessment of Enhanced Low-Light Image -- 2.1 Intrinsic Decomposition Module. 2.2 CNN-based Feature Extraction Module -- 2.3 Learnable Perceptual Distance Measurement -- 3 Experiments -- 3.1 Basic Evaluations -- 3.2 Evaluations of LIE-IQA with Related Methods -- 3.3 LIE-IQA for Low-Light Enhancement -- 4 Conclusion -- References -- Smooth Coupled Tucker Decomposition for Hyperspectral Image Super-Resolution -- 1 Introduction -- 2 Tensor Notations and Preliminaries -- 3 Problem Formulation -- 3.1 Problem Description and Degradation Model -- 3.2 MAP Formulation -- 3.3 Smooth Coupled Tucker Decomposition Model -- 3.4 Optimization -- 4 Experimental Results -- 4.1 Experimental Settings and Implementation Issues -- 4.2 Experimental Results -- 4.3 Choice of Model Order -- 5 Conclusion -- 1. References -- Self-Supervised Video Super-Resolution by Spatial Constraint and Temporal Fusion -- 1 Introduction -- 2 Related Work -- 2.1 SISR -- 2.2 VSR -- 3 Methodology -- 3.1 Overview -- 3.2 Internal-Data Based VSR -- 3.3 Spatio-Temporal VSR -- 4 Experiments -- 4.1 Protocols -- 4.2 Real-World Testing -- 4.3 Ablation Study -- 5 Conclusion -- References -- ODE-Inspired Image Denoiser: An End-to-End Dynamical Denoising Network -- 1 Introduction -- 2 Related Work -- 2.1 Image Denoising with CNN -- 2.2 Neural ODEs V.S. Residual Learning -- 3 Proposed Method -- 3.1 Network Architecture -- 3.2 Problem Formulation -- 3.3 OI-Block -- 4 Experiments -- 4.1 Ablation Study -- 4.2 Synthetic Noisy Images -- 4.3 Real Noisy Images -- 5 Conclusion -- References -- Image Outpainting with Depth Assistance -- 1 Introduction -- 2 Related Work -- 3 Our Model -- 3.1 Framework Design -- 3.2 Training -- 4 Experiment -- 4.1 Dataset -- 4.2 Quantitative Evaluation -- 4.3 Qualitative Evaluation -- 4.4 Comparison of Depth Feature Extraction Solutions -- 5 Conclusion -- References -- Light-Weight Multi-channel Aggregation Network for Image Super-Resolution -- 1 Introduction. 2 Proposed Method. |
Record Nr. | UNINA-9910506383503321 |
Cham, Switzerland : , : Springer, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Pattern recognition and computer vision . Part III : 4th Chinese Conference, PRCV 2021, Beijing, China, October 29-November 1, 2021, Proceedings / / Huimin Ma [and seven others] (editors) |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , 2022 |
Descrizione fisica | 1 online resource (648 pages) |
Disciplina | 006.4 |
Collana | Lecture notes in computer science |
Soggetto topico |
Pattern recognition systems
Computer vision |
ISBN | 3-030-88010-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part III -- Low-Level Vision and Image Processing -- SaliencyBERT: Recurrent Attention Network for Target-Oriented Multimodal Sentiment Classification -- 1 Introduction -- 2 Related Work -- 3 Proposed Model -- 3.1 Task Definition -- 3.2 Recurrent Attention Network -- 4 Experiments -- 4.1 Experiment Settings -- 4.2 Results and Analysis -- 5 Conclusion -- References -- Latency-Constrained Spatial-Temporal Aggregated Architecture Search for Video Deraining -- 1 Introduction -- 2 The Proposed Method -- 2.1 Spatial-Temporal Aggregated Architecture -- 2.2 Architecture Search -- 3 Experimental Results -- 3.1 Experiment Preparation -- 3.2 Running Time Evaluation -- 3.3 Quantitative Comparison -- 3.4 Qualitative Comparison -- 3.5 Ablation Study -- 4 Conclusions -- References -- Semantic-Driven Context Aggregation Network for Underwater Image Enhancement -- 1 Introduction -- 2 Method -- 2.1 The Overall Architecture -- 2.2 Semantic Feature Extractor -- 2.3 Multi-scale Feature Transformation Module -- 2.4 Context Aggregation Enhancement Network and Loss Function -- 3 Experiments -- 3.1 Experimental Setup -- 3.2 Comparison with the State-of-the-Arts -- 3.3 Ablation Study -- 3.4 Application on Salient Object Detection -- 4 Conclusion -- References -- A Multi-resolution Medical Image Fusion Network with Iterative Back-Projection -- 1 Introduction -- 2 Proposed Approach -- 2.1 Overall Framework -- 2.2 Network Architecture -- 2.3 Loss Function -- 3 Experiments -- 3.1 Dataset and Training Details -- 3.2 Results and Analysis of IBPNet -- 4 Conclusions -- References -- Multi-level Discriminator and Wavelet Loss for Image Inpainting with Large Missing Area -- 1 Introduction -- 2 Related Work -- 2.1 Image Inpainting -- 2.2 Adversarial Training -- 3 Our Approach -- 3.1 Multi-level Discriminator -- 3.2 Wavelet Loss.
4 Experiments -- 4.1 Experimental Settings -- 4.2 Performance Evaluation -- 4.3 Ablation Study -- 5 Conclusion -- References -- 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement -- 1 Introduction -- 2 Related Work -- 2.1 Low-Light Image Enhancement -- 2.2 Low-Light Video Enhancement -- 3 Method -- 3.1 Problem Formulation -- 3.2 Overview of the Pipeline -- 3.3 RSTAB Module -- 3.4 Unet Architecture with Global Projection -- 4 Experiment -- 4.1 Experimental Setting -- 4.2 Comparison with State-of-the-art Methods -- 4.3 Ablation Study -- 5 Conclusion -- References -- Single Image Specular Highlight Removal on Natural Scenes -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 Scene Illumination Evaluation -- 3.2 Smooth Feature Extraction -- 3.3 Coefficient Estimation and Highlight Removal -- 4 Experiments -- 4.1 Quantitative Comparison on Laboratory Images -- 4.2 Visual Effect Comparison on Natural Scene Images -- 4.3 Discussion of Important Parameters -- 5 Conclusion -- References -- Document Image Binarization Using Visibility Detection and Point Cloud Segmentation -- 1 Introduction -- 2 TPO(Target-Point Occlusion) -- 2.1 Point Cloud Transformation -- 2.2 Convex Hull -- 3 Algorithm -- 3.1 Binarization -- 3.2 Unshadow Binarization -- 4 Experiment -- 5 Conclusion -- References -- LF-MAGNet: Learning Mutual Attention Guidance of Sub-Aperture Images for Light Field Image Super-Resolution -- 1 Introduction -- 2 Related Work -- 2.1 Light Field Image Super-Resolution -- 2.2 Visual Attention Mechanism -- 3 Proposed Method -- 3.1 Shallow Feature Extraction -- 3.2 Mutual Attention Guidance -- 3.3 LF Image Reconstruction -- 4 Experiment -- 4.1 Dataset and Implementation Details -- 4.2 Ablation Studies -- 4.3 Comparisons with the State-of-The-Arts -- 5 Conclusion -- References. Infrared Small Target Detection Based on Weighted Variation Coefficient Local Contrast Measure -- 1 Introduction -- 2 The Proposed Algorithm -- 2.1 Variation Coefficient Local Contrast Measure -- 2.2 Weighted Variation Coefficient Local Contrast Measure -- 2.3 Target Detection -- 3 Experimental Results -- 3.1 Enhancement Performance Comparison -- 3.2 Detection Performance Comparison -- 4 Conclusion -- References -- Scale-Aware Distillation Network for Lightweight Image Super-Resolution -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Network Architecture -- 3.2 Scale-Aware Distillation Block -- 3.3 Comparisons with Other Information Distillation Methods -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Ablation Study -- 4.3 Comparisons with the State-of-the-Arts -- 5 Conclusion -- References -- Deep Multi-Illumination Fusion for Low-Light Image Enhancement -- 1 Introduction -- 2 Deep Multi-Illumination Fusion -- 2.1 Network Structure -- 2.2 Loss Function -- 3 Experimental Results -- 3.1 Implementation Details -- 3.2 Performance Evaluation -- 3.3 Ablation Analysis -- 3.4 Object Instance Segmentation -- 4 Conclusion -- References -- Relational Attention with Textual Enhanced Transformer for Image Captioning -- 1 Introduction -- 2 Related Work -- 2.1 Relationship Exploration -- 2.2 Transformer Architecture -- 3 The Proposed Approach -- 3.1 Relation Module -- 3.2 Attention Module -- 3.3 Decoder Module -- 3.4 Training and Objectives -- 4 Experiments -- 4.1 Datasets and Evaluation Metrics -- 4.2 Implementation Details -- 4.3 Ablation Study -- 4.4 Comparison with State-of-the-Art -- 5 Conclusion -- References -- Non-local Network Routing for Perceptual Image Super-Resolution -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Non-local Network Routing -- 3.2 Model Learning -- 4 Experiments -- 4.1 Evaluation Dataset and Metric. 4.2 Implementation Details -- 4.3 Derived Architecture -- 4.4 Comparison with State-of-the-Art Methods -- 5 Conclusion -- References -- Multi-focus Image Fusion with Cooperative Image Multiscale Decomposition -- 1 Introduction -- 2 Cooperative Image Multiscale Decomposition Based MGF -- 2.1 Mutually Guided Filter -- 2.2 Cooperative Image Multiscale Decomposition -- 3 Image Fusion with CIMD -- 3.1 Base Layers Fusion -- 3.2 Detailed Layers Fusion -- 3.3 Reconstruction -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Comparison to Classical Fusion Method -- 5 Conclusions -- References -- An Enhanced Multi-frequency Learned Image Compression Method -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 Formulation of Multi-frequency Learned Compression Models -- 3.2 Channel Attention Scheme -- 3.3 Decoder-Side Enhancement -- 4 Experiment Results -- 4.1 Parameter Description -- 4.2 Results Evaluation -- 5 Conclusion -- References -- Noise Map Guided Inpainting Network for Low-Light Image Enhancement -- 1 Introduction -- 2 Related Works -- 2.1 Low-Light Image Enhancement -- 2.2 Image Inpainting -- 3 Method -- 3.1 Stage I: Decomposition -- 3.2 Stage II: Restoration -- 4 Experiment -- 4.1 Implementation Details -- 4.2 Results and Analysis -- 4.3 Ablation Study -- 5 Conclusion -- References -- FIE-GAN: Illumination Enhancement Network for Face Recognition -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 Architecture -- 3.2 Loss Function -- 3.3 Deployment in Face Recognition -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Visual Perception Results -- 4.3 Face Recognition Results -- 4.4 Ablation Study -- 5 Conclusion -- References -- Illumination-Aware Image Quality Assessment for Enhanced Low-Light Image -- 1 Introduction -- 2 Illumination-Aware Quality Assessment of Enhanced Low-Light Image -- 2.1 Intrinsic Decomposition Module. 2.2 CNN-based Feature Extraction Module -- 2.3 Learnable Perceptual Distance Measurement -- 3 Experiments -- 3.1 Basic Evaluations -- 3.2 Evaluations of LIE-IQA with Related Methods -- 3.3 LIE-IQA for Low-Light Enhancement -- 4 Conclusion -- References -- Smooth Coupled Tucker Decomposition for Hyperspectral Image Super-Resolution -- 1 Introduction -- 2 Tensor Notations and Preliminaries -- 3 Problem Formulation -- 3.1 Problem Description and Degradation Model -- 3.2 MAP Formulation -- 3.3 Smooth Coupled Tucker Decomposition Model -- 3.4 Optimization -- 4 Experimental Results -- 4.1 Experimental Settings and Implementation Issues -- 4.2 Experimental Results -- 4.3 Choice of Model Order -- 5 Conclusion -- 1. References -- Self-Supervised Video Super-Resolution by Spatial Constraint and Temporal Fusion -- 1 Introduction -- 2 Related Work -- 2.1 SISR -- 2.2 VSR -- 3 Methodology -- 3.1 Overview -- 3.2 Internal-Data Based VSR -- 3.3 Spatio-Temporal VSR -- 4 Experiments -- 4.1 Protocols -- 4.2 Real-World Testing -- 4.3 Ablation Study -- 5 Conclusion -- References -- ODE-Inspired Image Denoiser: An End-to-End Dynamical Denoising Network -- 1 Introduction -- 2 Related Work -- 2.1 Image Denoising with CNN -- 2.2 Neural ODEs V.S. Residual Learning -- 3 Proposed Method -- 3.1 Network Architecture -- 3.2 Problem Formulation -- 3.3 OI-Block -- 4 Experiments -- 4.1 Ablation Study -- 4.2 Synthetic Noisy Images -- 4.3 Real Noisy Images -- 5 Conclusion -- References -- Image Outpainting with Depth Assistance -- 1 Introduction -- 2 Related Work -- 3 Our Model -- 3.1 Framework Design -- 3.2 Training -- 4 Experiment -- 4.1 Dataset -- 4.2 Quantitative Evaluation -- 4.3 Qualitative Evaluation -- 4.4 Comparison of Depth Feature Extraction Solutions -- 5 Conclusion -- References -- Light-Weight Multi-channel Aggregation Network for Image Super-Resolution -- 1 Introduction. 2 Proposed Method. |
Record Nr. | UNISA-996464422803316 |
Cham, Switzerland : , : Springer, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Pattern recognition and computer vision . Part II : 4th Chinese Conference, PRCV 2021, Beijing, China, October 29-November 1, 2021, Proceedings / / Huimin Ma [and seven others] (editors) |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (694 pages) |
Disciplina | 006.4 |
Collana | Lecture notes in computer science |
Soggetto topico |
Pattern recognition systems
Computer vision |
ISBN | 3-030-88007-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part II -- Computer Vision, Theories and Applications -- Dynamic Fusion Network for Light Field Depth Estimation -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 The Overall Architecture -- 3.2 Pyramid ConvGRU -- 3.3 Multi-modal Dynamic Fusion Module (MDFM) -- 4 Experiments -- 4.1 Experiments Setup -- 4.2 Ablation Studies -- 4.3 Comparison with State-of-the-arts -- 5 Conclusion -- References -- Metric Calibration of Aerial On-Board Multiple Non-overlapping Cameras Based on Visual and Inertial Measurement Data -- 1 Introduction -- 2 Related Works -- 3 Metric Calibration Based on Visual and Inertial Measurement Data -- 3.1 Notation and Problem Formulation -- 3.2 Relative Pose Estimation via Structure from Motion -- 3.3 Inertial Measurement Data Based Metric Scale Factor Estimation -- 4 Experimental Results -- 4.1 Equipment -- 4.2 Metric Calibration of the Aerial On-Board Non-overlapping Camera System -- 4.3 Metric Calibration of an Industrial Non-overlapping Camera System -- 4.4 Experiments of Applications for Object Metric 3D Reconstruction -- 5 Conclusions -- References -- SEINet: Semantic-Edge Interaction Network for Image Manipulation Localization -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Cross Interaction Pattern -- 3.2 Aggregate Interaction Module -- 3.3 Bidirectional Fusion Module -- 3.4 Training Loss -- 4 Experiments -- 4.1 Datasets and Implementation Details -- 4.2 Evaluation Metrics -- 4.3 Ablation Studies -- 4.4 Robustness Analysis -- 4.5 Comparing with State-of-the-Art -- 5 Conclusion -- References -- Video-Based Reconstruction of Smooth 3D Human Body Motion -- 1 Introduction -- 2 Related Work -- 2.1 3D Human Mesh from Single Images -- 2.2 3D Human Mesh from Video -- 2.3 GANs for Modeling -- 3 Approach -- 3.1 3D Body Representation -- 3.2 Temporal Encoder.
3.3 Constraint Loss -- 3.4 Motion Discriminator -- 4 Experiments -- 4.1 Implement Details -- 4.2 Comparison to Other Methods -- 4.3 Ablation Experiments -- 5 Conclusion -- References -- A Unified Modular Framework with Deep Graph Convolutional Networks for Multi-label Image Recognition -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Image Feature Extraction Module -- 3.2 Label Semantic Extraction Module -- 3.3 Prediction Results and Training Scheme -- 4 Experiments -- 4.1 Evaluation Metrics -- 4.2 Implementation Details -- 4.3 Experimental Results -- 4.4 Ablation Studies -- 4.5 Adjacency Matrix Visualization -- 5 Conclusion -- References -- 3D Correspondence Grouping with Compatibility Features -- 1 Introduction -- 2 Related Work -- 2.1 3D Correspondence Grouping -- 2.2 Learning for Correspondence Grouping -- 3 Methodology -- 3.1 Compatibility Check -- 3.2 CF Feature Extraction -- 3.3 CF Classification -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Method Analysis -- 4.3 Comparative Results and Visualization -- 5 Conclusions -- References -- Contour-Aware Panoptic Segmentation Network -- 1 Introduction -- 2 Related Work -- 3 Approach -- 3.1 Panoptic Contour Branch -- 3.2 Panoptic Segmentation Branch -- 3.3 Structure Loss Function -- 4 Experiments -- 4.1 Dataset -- 4.2 Evaluation Metrics -- 4.3 Implementation Details -- 4.4 Comparisons with Other Methods -- 4.5 Ablative Analysis -- 5 Conclusion -- References -- VGG-CAE: Unsupervised Visual Place Recognition Using VGG16-Based Convolutional Autoencoder -- 1 Introduction -- 2 Realted Work -- 2.1 Handcraft-Based Methods -- 2.2 CNN-Based Methods -- 2.3 AE-Based Methods -- 3 VGG16-Based Convolutional Autoencoder -- 3.1 Model Architecture -- 3.2 Training -- 3.3 Matching -- 4 Experiments -- 4.1 Datasets -- 4.2 State-of-the-Art Approaches -- 4.3 Ground Truth -- 4.4 Comparison and Discussion. 5 Conclusion -- References -- Slice Sequential Network: A Lightweight Unsupervised Point Cloud Completion Network -- 1 Introduction -- 2 Related Work -- 2.1 3D Learning -- 2.2 3D Completion -- 3 Our Method -- 3.1 Overview -- 3.2 Slicer -- 3.3 Multi-scale Point Encoder -- 3.4 Sequential Predictor -- 3.5 Shape Prediction Decoder -- 3.6 Loss Function -- 4 Experiments -- 4.1 Datasets and Implementation Details -- 4.2 Point Cloud Completion Results -- 4.3 Analysis of Encoder -- 4.4 Robustness to Occlusion -- 4.5 Comparison of Complexity -- 5 Ablation Study -- 6 Conclusion -- References -- From Digital Model to Reality Application: A Domain Adaptation Method for Rail Defect Detection -- 1 Introduction -- 2 Preliminaries -- 3 Method -- 3.1 DT-Based Virtual Data Generation -- 3.2 Dummy-Target Domain -- 3.3 DA-YOLO -- 4 Experiment -- 4.1 Dataset and Evaluation Metrics -- 4.2 Experiment Settings -- 4.3 Experimental Results -- 5 Conclusion -- References -- FMixAugment for Semi-supervised Learning with Consistency Regularization -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 FMixAugment: MixAugment Combined with FMask -- 3.2 Improved Consistency Regularization -- 3.3 Dynamic Growth Threshold -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Experimental Results -- 4.3 Ablation Study -- 5 Conclusion and Future Work -- References -- IDANet: Iterative D-LinkNets with Attention for Road Extraction from High-Resolution Satellite Imagery -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Overview -- 3.2 Basic Iteration Module -- 3.3 Iterative Architecture -- 4 Experiment -- 4.1 Datasets -- 4.2 Implementation Details -- 5 Results -- 5.1 Comparison of Road Segmentation Methods -- 5.2 Ablation Experiment -- 5.3 The Influence of Network Iteration -- 6 Conclusion -- References. Disentangling Deep Network for Reconstructing 3D Object Shapes from Single 2D Images -- 1 Introduction -- 2 Related Works -- 3 Disentangling Deep Network -- 3.1 Network Architecture -- 3.2 Learning Objective Functions -- 3.3 Training Strategy -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Ablation Analysis -- 4.3 3D Reconstruction -- 4.4 Effects of 3D Shape Identity -- 5 Conclusion -- References -- AnchorConv: Anchor Convolution for Point Clouds Analysis -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 AnchorConv -- 3.2 Anchor Reweighting Module -- 3.3 Network Architectures -- 4 Experiments -- 4.1 Classification on ModelNet40 -- 4.2 ShapeNet Part Segmentation -- 4.3 3D Segmentation of Indoor Scene -- 4.4 3D Segmentation of Outdoor Scene -- 4.5 Ablation Study -- 4.6 Qualitative Results -- 5 Conclusion -- References -- IFR: Iterative Fusion Based Recognizer for Low Quality Scene Text Recognition -- 1 Introduction -- 2 Related Works -- 3 Method -- 3.1 Iterative Collaboration -- 3.2 Fusion Module RRF -- 3.3 Loss Functions -- 3.4 Paired Training Data Generate -- 4 Experiments -- 4.1 Datasets and Implementation Details -- 4.2 Ablation Study -- 4.3 Comparisons with State-of-the-Arts -- 5 Conclusion -- References -- Immersive Traditional Chinese Portrait Painting: Research on Style Transfer and Face Replacement -- 1 Introduction -- 2 Related Work -- 2.1 Neural Style Transfer -- 2.2 Face Replacement -- 3 The P-CP Method -- 3.1 Network Architecture -- 3.2 Neural Style Transfer Network -- 3.3 Face Replacement -- 4 Experiment -- 4.1 Comparison of Different Traditional Chinese Painting Styles -- 4.2 Image Detail Exploration and Optimization -- 4.3 Improvement of Face Replacement with Style Transfer -- 5 Conclusion -- References -- Multi-camera Extrinsic Auto-calibration Using Pedestrians in Occluded Environments -- 1 Introduction. 2 Related Work -- 3 Calibration Based on 3D Positions -- 3.1 3D Head Positions in Local Camera Coordinates -- 3.2 Registration of 3D Point Sets -- 4 Refinement -- 5 Experiments and Results -- 6 Conclusion -- References -- Dual-Layer Barcodes -- 1 Introduction -- 2 Related Work -- 2.1 Steganography -- 2.2 Watermarking -- 2.3 Barcode -- 3 Method -- 3.1 Encoder -- 3.2 Decoder -- 3.3 Noise Layer -- 3.4 Discriminator -- 4 Experiments and Analysis -- 4.1 Dataset and Experimental Setting -- 4.2 Implementation Details -- 4.3 Metrics -- 5 Discussion -- 6 Conclusion -- References -- Graph Matching Based Robust Line Segment Correspondence for Active Camera Relocalization -- 1 Introduction -- 2 Method -- 2.1 System Overview -- 2.2 Robust Line Segment Matching -- 2.3 Active Camera Relocation -- 3 Experiments -- 3.1 Experimental Setup -- 3.2 Analysis of Line Segment Matching -- 3.3 Analysis of Relocalization Accuracy and Convergence Speed -- 3.4 Analysis of Robustness in Hard Scenes -- 4 Conclusion -- References -- Unsupervised Learning Framework for 3D Reconstruction from Face Sketch -- 1 Introduction -- 2 Related Work -- 2.1 Image-to-Image Translation -- 2.2 3D Shape Reconstruction -- 3 Method -- 3.1 Dataset Construction -- 3.2 Network Architecture -- 3.3 Loss Functions -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Quantitative Results and Ablation Study -- 4.3 Qualitative Results -- 5 Conclusion -- References -- HEI-Human: A Hybrid Explicit and Implicit Method for Single-View 3D Clothed Human Reconstruction -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Overview -- 3.2 Explicit Model -- 3.3 Implicit Model -- 3.4 Loss Functions -- 4 Experiments -- 4.1 Dataset and Protocol -- 4.2 Training Details -- 4.3 Quantitative Results -- 4.4 Qualitative Results -- 4.5 Ablation Studies -- 5 Conclusions -- References. A Point Cloud Generative Model via Tree-Structured Graph Convolutions for 3D Brain Shape Reconstruction. |
Record Nr. | UNINA-9910506384603321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Pattern recognition and computer vision : 4th Chinese conference, PRCV 2021, Beijing, China, October 29 - November 1, 2021, proceedings, part I / / Huimin Ma [and seven others], editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (634 pages) |
Disciplina | 621.367 |
Collana | Lecture Notes in Computer Science |
Soggetto topico |
Optical data processing
Artificial intelligence Computer vision |
ISBN | 3-030-88004-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part I -- Object Detection, Tracking and Recognition -- High-Performance Discriminative Tracking with Target-Aware Feature Embeddings -- 1 Introduction -- 2 Discriminative Tracking with Target-Aware Feature Embeddings -- 2.1 Target-Unaware Feature Extraction -- 2.2 Target-Aware Feature Construction -- 2.3 Ridge Regression with Target-Aware Feature Embeddings -- 2.4 Offline Training -- 2.5 Online Tracking -- 3 Experiments -- 3.1 Implementation Details -- 3.2 Feature Comparisons -- 3.3 State-of-the-Art Comparisons -- 4 Conclusion -- References -- 3D Multi-object Detection and Tracking with Sparse Stationary LiDAR -- 1 Introduction -- 2 Related Work -- 2.1 3D Object Detection -- 2.2 3D Multi-Object Tracking -- 3 Proposed Method -- 3.1 Tracklet Regression -- 3.2 Data Association -- 3.3 Football Game Dataset -- 4 Experiments -- 4.1 Settings -- 4.2 Experimental Results -- 5 Conclusion -- References -- CRNet: Centroid Radiation Network for Temporal Action Localization -- 1 Introduction -- 2 Related Work -- 3 Our Approach -- 3.1 Notation and Preliminaries -- 3.2 Feature Extractor Network -- 3.3 Relation Network -- 3.4 Centroids Prediction -- 3.5 Instance Generation -- 3.6 Overall Objective Before Random Walk -- 3.7 Prediction and Post-processing -- 4 Experiments -- 4.1 Datasets -- 4.2 Implementation Details -- 4.3 Evaluation of RelNet, CenNet and OffNet -- 4.4 Performance with Fewer Data -- 4.5 Comparisons with State-of-the-Art -- 5 Conclusion -- References -- Weakly Supervised Temporal Action Localization with Segment-Level Labels -- 1 Introduction -- 2 Related Work -- 3 Our Approach -- 3.1 Problem Statement and Notation -- 3.2 Architecture -- 3.3 Classification Loss -- 3.4 Partial Segment Loss -- 3.5 Sphere Loss -- 3.6 Propagation Loss -- 3.7 Classification and Localization -- 4 Experiments.
4.1 Experimental Setup -- 4.2 Exploratory Experiments -- 4.3 Comparisons with the State-of-the-art -- 5 Conclusion -- References -- Locality-Constrained Collaborative Representation with Multi-resolution Dictionary for Face Recognition -- 1 Introduction -- 2 Proposed Method -- 2.1 Notations -- 2.2 Model of LCCR-MRD -- 2.3 Optimization -- 2.4 Classification -- 3 Experiments -- 3.1 Experimental Settings -- 3.2 Results and Discussions -- 4 Conclusion -- References -- Fast and Fusion: Real-Time Pedestrian Detector Boosted by Body-Head Fusion -- 1 Introdution -- 2 Related Work -- 3 Fast and Fusion -- 3.1 Baseline -- 3.2 Body-Head Fusion -- 3.3 Auxiliary Training Task -- 4 Experiment -- 4.1 Datasets and Evaluation Metric -- 4.2 Evaluation on Extended CityPersons Dataset -- 4.3 Evaluation on CrowdHuman Dataset -- 4.4 Ablation Study -- 5 Conclusion -- References -- STA-GCN: Spatio-Temporal AU Graph Convolution Network for Facial Micro-expression Recognition -- 1 Introduction -- 2 Related Work -- 2.1 Micro-Expression Recognition -- 2.2 Graph Convolution Network -- 3 Method -- 3.1 ROI Division -- 3.2 3D CNN with Non-Local Block -- 3.3 AU-attention Graph Convolution -- 3.4 Loss Function -- 4 Experiment -- 4.1 Experimental Setting -- 4.2 Implementation Details -- 4.3 Experimental Result -- 5 Conclusion -- References -- Attentive Contrast Learning Network for Fine-Grained Classification -- 1 Introduction -- 2 Method -- 2.1 Attention Generator -- 2.2 Contrastive Learning Module -- 2.3 Synergic Learning Module -- 2.4 Learning Attentive Contrast Learning Networks -- 3 Experiments -- 3.1 Datasets -- 3.2 Implementation Details -- 3.3 Ablation Study -- 3.4 Comparison with Other Methods -- 3.5 Visualization Results -- 4 Conclusion -- References -- Relation-Based Knowledge Distillation for Anomaly Detection -- 1 Introduction -- 2 Related Work -- 2.1 CAE-Based Methods. 2.2 GAN-Based Methods -- 2.3 KD-Based Methods -- 3 Method -- 3.1 Gram Matrix and the "FSP Matrix" -- 3.2 The Proposed Approach -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Datasets -- 4.3 Results -- 5 Conclusion -- References -- High Power-Efficient and Performance-Density FPGA Accelerator for CNN-Based Object Detection -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 System Framework -- 3.2 Neural Network Accelerator -- 4 Experiments -- 5 Conclusion -- References -- Relation-Guided Actor Attention for Group Activity Recognition -- 1 Introduction -- 2 Related Works -- 3 Method -- 3.1 Location-Aware Relation Module -- 3.2 Relation-Guided Actor Attention Module -- 3.3 Classification Layer -- 4 Experiments -- 4.1 Datasets and Implementation Details -- 4.2 Ablation Study -- 4.3 Comparison with the State-of-the-Arts -- 5 Conclusion -- References -- MVAD-Net: Learning View-Aware and Domain-Invariant Representation for Baggage Re-identification -- 1 Introduction -- 2 Related Works -- 2.1 Representation Learning and Metric Learning in ReID -- 2.2 View-Based Methods for ReID -- 2.3 Domain Adaptation -- 3 The Proposed Method -- 3.1 Baggage ReID Baseline -- 3.2 Multi-view Attention Model -- 3.3 Domain-Invariant Learning -- 4 Experiments -- 4.1 Dataset and Protocols -- 4.2 Implementation Details -- 4.3 Effectiveness of Multi-view Attention -- 4.4 Effectiveness of Domain-Invariant Learning -- 4.5 Comparison with Other Methods -- 5 Conclusion -- References -- Joint Attention Mechanism for Unsupervised Video Object Segmentation -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Joint Attention Mechanism -- 3.2 Network Architecture -- 4 Experiments -- 4.1 Datasets and Evaluation -- 4.2 Ablation Study -- 4.3 Comparison to the State-Of-The-Arts -- 5 Conclusion -- References -- Foreground Feature Selection and Alignment for Adaptive Object Detection. 1 Introduction -- 2 Related Work -- 2.1 Object Detection -- 2.2 Adaptive Object Detection -- 3 Method -- 3.1 Framework Overview -- 3.2 Foreground Selection Module -- 3.3 Multi-level Domain Adaptation -- 3.4 Overall Objective -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Adaptation Results -- 4.3 Visualization and Discussion -- 5 Conclusions -- References -- Exploring Category-Shared and Category-Specific Features for Fine-Grained Image Classification -- 1 Introduction -- 2 Proposed Method -- 2.1 Category-Shared Feature Extraction Module -- 2.2 Category-Specific Feature Extraction Module -- 3 Experiment -- 3.1 Implementation Details -- 3.2 Experimental Results -- 3.3 Ablation Studies -- 3.4 Visualizations -- 4 Conclusions -- References -- Deep Mixture of Adversarial Autoencoders Clustering Network -- 1 Introduction -- 2 Mixture of Adversarial Autoencoders -- 2.1 Adversarial Block -- 2.2 Target Distribution -- 2.3 Loss Function -- 2.4 Training Procedure -- 3 Experiment -- 3.1 Clustering Results -- 3.2 Reconstruct and Generate -- 4 Conclusion -- References -- SA-InterNet: Scale-Aware Interaction Network for Joint Crowd Counting and Localization -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Scale-Aware Feature Extractor -- 3.2 Density-Localization Interaction Module -- 3.3 Loss Function -- 4 Experiments -- 4.1 Datasets -- 4.2 Evaluation Metrics -- 4.3 Implementation Details -- 4.4 Comparison with State-of-the-Arts -- 4.5 Ablation Study -- 5 Conclusion -- References -- Conditioners for Adaptive Regression Tracking -- 1 Introduction -- 2 Related Work -- 2.1 One-Stage Visual Tracking -- 2.2 Conditional Instance Learning -- 3 The Proposed Conditional Regression Tracking -- 3.1 Conditional Batch Normalization -- 3.2 Visual Context and Trajectory Formulating -- 3.3 Visual Context Network -- 3.4 Trajectory Network. 3.5 Implementation, Training and Inference -- 4 Experiments -- 4.1 Ablation Study -- 5 Conclusions -- References -- Attention Template Update Model for Siamese Tracker -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Traditional Update -- 3.2 Network Architecture -- 3.3 Adjustment and Update Blocks -- 3.4 Channel Attention Block -- 3.5 Training Model -- 4 Experiment -- 4.1 Implementation Details -- 4.2 Checkpoint Selection -- 4.3 Performance in Several Benchmarks -- 4.4 Ablation Studies -- 5 Conclusion -- References -- Insight on Attention Modules for Skeleton-Based Action Recognition -- 1 Introduction -- 2 Related Work -- 2.1 Skeleton-Based Action Recognition -- 2.2 Attention Mechanisms -- 3 Multi-category Attention Modules -- 3.1 Spatial-Wise Attention Module -- 3.2 Temporal-Wise Attention Module -- 3.3 Spatiotemporal Attention Module -- 4 Experiments -- 4.1 Datasets -- 4.2 Ablation Studies -- 4.3 Comparison with the State-of-the-Art -- 5 Conclusions -- References -- AO-AutoTrack: Anti-occlusion Real-Time UAV Tracking Based on Spatio-temporal Context -- 1 Introduction -- 2 Related Work -- 2.1 Discriminative Correlation Filter Tracking Algorithm -- 2.2 Anti-occlusion Object Tracking -- 2.3 DCF Onboard UAV -- 3 Proposed Tracking Approach -- 3.1 Review AutoTrack -- 3.2 Temporal Regularization Analysis and Improvement -- 3.3 Re-detection Mechanism -- 4 Experiment -- 4.1 Implementation Details -- 4.2 Comparison with Hand-Crafted Based Trackers -- 4.3 Re-detection Evaluation -- 5 Conclusions -- References -- Two-Stage Recognition Algorithm for Untrimmed Converter Steelmaking Flame Video -- 1 Introduction -- 2 Related Works -- 3 Method -- 3.1 Feature Extraction -- 3.2 Recognition for Untrimmed Flame Videos -- 4 Experiments -- 4.1 Datasets -- 4.2 Implemented Details -- 4.3 Data Analysis -- 5 Conclusion -- References. Scale-Aware Multi-branch Decoder for Salient Object Detection. |
Record Nr. | UNINA-9910506388303321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Pattern recognition and computer vision . Part IV : 4th Chinese Conference, PRCV 2021, Beijing, China, October 29-November 1, 2021, Proceedings / / Huimin Ma [and seven others] (editors) |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (594 pages) |
Disciplina | 006.4 |
Collana | Lecture notes in computer science |
Soggetto topico |
Pattern recognition systems
Computer vision |
ISBN | 3-030-88013-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part IV -- Machine Learning, Neural Network and Deep Learning -- Edge-Wise One-Level Global Pruning on NAS Generated Networks -- 1 Introduction -- 2 Related Work -- 2.1 Neural Architecture Search -- 2.2 Network Pruning -- 3 Edge-Wise One-Level Global Pruning on DARTS-Based Network -- 3.1 Edge Weight Assignment -- 3.2 One-Level Structure Learning -- 3.3 Procedure of EOG-Pruning -- 3.4 Comparison with Previous Work -- 4 Experiments -- 4.1 Datasets -- 4.2 EOG-Pruning on CIFAR-10 and CIFAR-100 -- 4.3 EOG-Pruning on ImageNet -- 4.4 Visualization -- 4.5 Ablation Study -- 5 Conclusion -- References -- Convolution Tells Where to Look -- 1 Introduction -- 2 Related Work -- 3 Feature Difference Module -- 3.1 Feature Difference -- 3.2 FD Networks -- 4 Experiments -- 4.1 Results on CIFAR-10 and CIFAR-100 -- 4.2 ImageNet Classification -- 4.3 VOC 2012 Object Detection -- 5 Analysis and Interpretation -- 6 Conclusion -- References -- Robust Single-Step Adversarial Training with Regularizer -- 1 Introduction -- 2 Related Work -- 2.1 Adversarial Training -- 2.2 Single-Step Adversarial Training -- 3 Proposed Approach -- 3.1 Observation -- 3.2 PGD Regularization -- 3.3 Training Route -- 4 Experiments -- 4.1 Results on MNIST -- 4.2 Results on CIFAR-10 -- 5 Conclusion -- References -- Texture-Guided U-Net for OCT-to-OCTA Generation -- 1 Introduction -- 2 Method -- 3 Experiments -- 3.1 Dataset and Metrics -- 3.2 Results -- 4 Conclusion -- References -- Learning Key Actors and Their Interactions for Group Activity Recognition -- 1 Introduction -- 2 Related Work -- 2.1 Group Activity Recognition -- 2.2 Graph Neural Networks -- 3 Approach and Framework -- 3.1 Preliminaries -- 3.2 Extracting the SARG -- 3.3 Feature Fusion -- 3.4 Training Loss -- 4 Experiments -- 4.1 Ablation Studies -- 4.2 Compared with SOTA -- 5 Conclusion.
References -- Attributed Non-negative Matrix Multi-factorization for Data Representation -- 1 Introduction -- 2 Related Work -- 2.1 NMF -- 2.2 GNMF -- 3 The Proposed Method -- 3.1 Motivation and Objective Function -- 3.2 Model Optimization -- 3.3 Algorithm Analysis -- 4 Experiments -- 4.1 Experiment Settings -- 4.2 Experiment Results -- 4.3 Parameter Analysis -- 4.4 Convergence Study -- 5 Conclusions -- References -- Improved Categorical Cross-Entropy Loss for Training Deep Neural Networks with Noisy Labels -- 1 Introduction -- 2 Improved Categorical Cross-Entropy Loss for Noise-Robust Classification -- 2.1 Robustness Analysis of CCE and MAE -- 2.2 Improved Categorical Cross Entropy -- 2.3 Theoretical Analysis of ICCE -- 3 Experiment -- 3.1 Dataset and Model Architectures -- 3.2 Label Noise -- 3.3 Evaluation of the CIFAR Dataset with Synthetic Noise -- 4 Conclusion -- References -- A Residual Correction Approach for Semi-supervised Semantic Segmentation -- 1 Introduction -- 2 Related Work -- 2.1 Supervised Semantic Segmentation -- 2.2 Semi-supervised Semantic Segmentation -- 3 Method -- 3.1 Residual Correction Network -- 3.2 Supervised Training -- 3.3 Semi-supervised Training -- 4 Experiments -- 4.1 Network Architecture -- 4.2 Datasets and Evaluation Metrics -- 4.3 Experimental Settings -- 4.4 Results -- 5 Conclusions -- References -- Hypergraph Convolutional Network with Hybrid Higher-Order Neighbors -- 1 Introduction -- 2 Related Works -- 2.1 Graph Neural Networks -- 2.2 Learning on Hypergraph -- 2.3 Hypergraph Neural Network -- 3 Preliminary Knowledge -- 3.1 Hypergraph -- 3.2 Hypergraph Convolution Network -- 4 Method -- 5 Experiments -- 5.1 Datasets and Baseline -- 5.2 Experimental Setting -- 5.3 Experimental Results and Discussion -- 6 Conclusions -- References -- Text-Aware Single Image Specular Highlight Removal -- 1 Introduction. 2 Related Work -- 2.1 Dichromatic Reflection Model-Based Methods -- 2.2 Inpainting-Based Methods -- 2.3 Deep Learning-Based Methods -- 3 Datasets -- 3.1 Real Dataset -- 3.2 Synthetic Datasets -- 4 Proposed Method -- 4.1 Network Architecture -- 4.2 Loss Functions -- 5 Experiments -- 5.1 Implementation Settings -- 5.2 Qualitative Evaluation -- 5.3 Quantitative Evaluation -- 5.4 Ablation Study -- 6 Conclusion and Future Work -- References -- Minimizing Wasserstein-1 Distance by Quantile Regression for GANs Model -- 1 Introduction -- 2 Related Work -- 3 Background -- 3.1 Wasserstein GAN -- 3.2 Quantile Regression -- 4 Our Method -- 5 Experiment -- 5.1 Basic Setting -- 5.2 IS and FID Criteria Experiment -- 5.3 Adam and Rmsprob Experiment -- 5.4 Different Quantile Initialization Experiment -- 6 Conclusion -- References -- A Competition of Shape and Texture Bias by Multi-view Image Representation -- 1 Introduction -- 2 Multi-view Image Representations -- 2.1 Background Representations -- 2.2 Shape Representations -- 2.3 Texture Representations -- 3 Loss -- 4 Experiments -- 4.1 Datasets -- 4.2 Implementation Details -- 4.3 Results and Analysis -- 5 Conclusion and Future Work -- References -- Learning Indistinguishable and Transferable Adversarial Examples -- 1 Introduction -- 2 Related Work -- 2.1 Adversarial Example Generation -- 2.2 The Fast Gradient Sign Method Series -- 3 Methodology -- 3.1 The Piecewise Linear Function -- 3.2 The Gradient Regularization Term -- 3.3 The Mixed-Input Strategy -- 4 Experiments -- 4.1 Experimental Setting -- 4.2 Ablation Study -- 4.3 The Results of Single-Model Attacks -- 4.4 The Results of Multi-model Attacks -- 5 Conclusion -- References -- Efficient Object Detection and Classification of Ground Objects from Thermal Infrared Remote Sensing Image Based on Deep Learning -- 1 Introduction -- 2 Related Work -- 3 Methodology. 3.1 Backbone Network -- 3.2 Feature Pyramid Networks -- 3.3 Adaptive Multiscale Receptive Field -- 3.4 Loss Function -- 4 Experiments and Results -- 4.1 Dataset -- 4.2 Results -- 5 Conclusions -- References -- MEMA-NAS: Memory-Efficient Multi-Agent Neural Architecture Search -- 1 Introduction -- 2 MEMA-NAS Framework -- 2.1 Multi-Agent Search Algorithm -- 2.2 Resource Constraint -- 3 Experiments -- 3.1 Datasets and Evaluations -- 3.2 Illustration of Searched Architecture and Analysis -- 3.3 Ablation Experiments for Individual Module Search -- 3.4 Generalization Performance Evaluation -- 3.5 Comparison with NAS-Based Detection Works -- 3.6 GPU Memory Consumption Evaluation -- 4 Conclusion -- References -- Adversarial Decoupling for Weakly Supervised Semantic Segmentation -- 1 Introduction -- 2 Related Work -- 2.1 Initial Prediction for WSSS -- 2.2 Response Refinement for WSSS -- 3 Method -- 3.1 Sub-category Clustering -- 3.2 Context Decoupling Augmentation -- 3.3 Adversarial Climbing -- 4 Experiments -- 4.1 Evaluated Dataset and Metric -- 4.2 Ablation Study and Analysis -- 4.3 Semantic Segmentation Performance -- 5 Conclusion -- References -- Towards End-to-End Embroidery Style Generation: A Paired Dataset and Benchmark -- 1 Introduction -- 2 Related Work -- 2.1 Traditional Stitching Generation -- 2.2 Style Transfer -- 2.3 Image-to-Image Translation -- 2.4 Related Datasets -- 3 Paired Embroidery Dataset Overview -- 4 Automatic Embroidery Generation -- 4.1 Local Texture Generation -- 4.2 Global Fine-Tuning -- 5 Experiments -- 5.1 Experimental Setting -- 5.2 Evaluation Metrics -- 5.3 Experimental Results -- 6 Conclusion -- References -- Efficient and Real-Time Particle Detection via Encoder-Decoder Network -- 1 Introduction -- 2 Related Work -- 2.1 Particle Detection Methods -- 2.2 Decoder Architectures -- 2.3 Light-Weight Networks. 2.4 Knowledge Distillation -- 3 The Proposed Method -- 3.1 Network Framework -- 3.2 Loss Function -- 3.3 Structured Knowledge Distillation -- 4 Experiments -- 4.1 Datasets and Implementation Details -- 4.2 Evaluation Metrics -- 4.3 Results and Analysis -- 5 Conclusion -- References -- Flexible Projection Search Using Optimal Re-weighted Adjacency for Unsupervised Manifold Learning -- 1 Introduction -- 2 Graph Construction and Metric Learning -- 2.1 Graph-Based Affinity Matrix -- 2.2 Graph Embedding -- 2.3 Distance Metric Learning -- 3 Flexible Projection Search Using Optimal Re-weighted Adjacency (FPSORA) -- 3.1 Quadratic Programming for Updating Adjacency Weights -- 3.2 Flexible Projection Search for Preservation of Original Locality -- 3.3 Complete Workflow of the Proposed FPSORA -- 4 Experiments and Analysis -- 4.1 Evaluation Metrics -- 4.2 Experimental Setup -- 4.3 Experiments and Analysis -- 5 Conclusion -- References -- Fabric Defect Detection via Multi-scale Feature Fusion-Based Saliency -- 1 Introduction -- 2 Proposed Method -- 2.1 Multi-scale Feature Learning Module -- 2.2 Feedback Attention Refinement Fusion Module -- 2.3 The Joint Loss -- 3 Experiments -- 3.1 Dataset and Evaluation Metrics -- 3.2 Implementation Details -- 3.3 Comparison with State-of-the-Arts -- 3.4 Ablation Study -- 4 Conclusion -- References -- Improving Adversarial Robustness of Detector via Objectness Regularization -- 1 Introduction -- 2 Method -- 2.1 Vanishing Adversarial Patch -- 2.2 Objectness Regularization -- 3 Experiment -- 3.1 Experimental Setup -- 3.2 Experimental Result -- 4 Conclusion -- References -- IPE Transformer for Depth Completion with Input-Aware Positional Embeddings -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Input-Aware Positional Embedding -- 3.2 IPE Transformer -- 3.3 Network Structure -- 4 Experiment -- 4.1 Setup. 4.2 Experiment Results. |
Record Nr. | UNINA-9910506409003321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Pattern recognition and computer vision : 4th Chinese conference, PRCV 2021, Beijing, China, October 29 - November 1, 2021, proceedings, part I / / Huimin Ma [and seven others], editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (634 pages) |
Disciplina | 621.367 |
Collana | Lecture Notes in Computer Science |
Soggetto topico |
Optical data processing
Artificial intelligence Computer vision |
ISBN | 3-030-88004-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part I -- Object Detection, Tracking and Recognition -- High-Performance Discriminative Tracking with Target-Aware Feature Embeddings -- 1 Introduction -- 2 Discriminative Tracking with Target-Aware Feature Embeddings -- 2.1 Target-Unaware Feature Extraction -- 2.2 Target-Aware Feature Construction -- 2.3 Ridge Regression with Target-Aware Feature Embeddings -- 2.4 Offline Training -- 2.5 Online Tracking -- 3 Experiments -- 3.1 Implementation Details -- 3.2 Feature Comparisons -- 3.3 State-of-the-Art Comparisons -- 4 Conclusion -- References -- 3D Multi-object Detection and Tracking with Sparse Stationary LiDAR -- 1 Introduction -- 2 Related Work -- 2.1 3D Object Detection -- 2.2 3D Multi-Object Tracking -- 3 Proposed Method -- 3.1 Tracklet Regression -- 3.2 Data Association -- 3.3 Football Game Dataset -- 4 Experiments -- 4.1 Settings -- 4.2 Experimental Results -- 5 Conclusion -- References -- CRNet: Centroid Radiation Network for Temporal Action Localization -- 1 Introduction -- 2 Related Work -- 3 Our Approach -- 3.1 Notation and Preliminaries -- 3.2 Feature Extractor Network -- 3.3 Relation Network -- 3.4 Centroids Prediction -- 3.5 Instance Generation -- 3.6 Overall Objective Before Random Walk -- 3.7 Prediction and Post-processing -- 4 Experiments -- 4.1 Datasets -- 4.2 Implementation Details -- 4.3 Evaluation of RelNet, CenNet and OffNet -- 4.4 Performance with Fewer Data -- 4.5 Comparisons with State-of-the-Art -- 5 Conclusion -- References -- Weakly Supervised Temporal Action Localization with Segment-Level Labels -- 1 Introduction -- 2 Related Work -- 3 Our Approach -- 3.1 Problem Statement and Notation -- 3.2 Architecture -- 3.3 Classification Loss -- 3.4 Partial Segment Loss -- 3.5 Sphere Loss -- 3.6 Propagation Loss -- 3.7 Classification and Localization -- 4 Experiments.
4.1 Experimental Setup -- 4.2 Exploratory Experiments -- 4.3 Comparisons with the State-of-the-art -- 5 Conclusion -- References -- Locality-Constrained Collaborative Representation with Multi-resolution Dictionary for Face Recognition -- 1 Introduction -- 2 Proposed Method -- 2.1 Notations -- 2.2 Model of LCCR-MRD -- 2.3 Optimization -- 2.4 Classification -- 3 Experiments -- 3.1 Experimental Settings -- 3.2 Results and Discussions -- 4 Conclusion -- References -- Fast and Fusion: Real-Time Pedestrian Detector Boosted by Body-Head Fusion -- 1 Introdution -- 2 Related Work -- 3 Fast and Fusion -- 3.1 Baseline -- 3.2 Body-Head Fusion -- 3.3 Auxiliary Training Task -- 4 Experiment -- 4.1 Datasets and Evaluation Metric -- 4.2 Evaluation on Extended CityPersons Dataset -- 4.3 Evaluation on CrowdHuman Dataset -- 4.4 Ablation Study -- 5 Conclusion -- References -- STA-GCN: Spatio-Temporal AU Graph Convolution Network for Facial Micro-expression Recognition -- 1 Introduction -- 2 Related Work -- 2.1 Micro-Expression Recognition -- 2.2 Graph Convolution Network -- 3 Method -- 3.1 ROI Division -- 3.2 3D CNN with Non-Local Block -- 3.3 AU-attention Graph Convolution -- 3.4 Loss Function -- 4 Experiment -- 4.1 Experimental Setting -- 4.2 Implementation Details -- 4.3 Experimental Result -- 5 Conclusion -- References -- Attentive Contrast Learning Network for Fine-Grained Classification -- 1 Introduction -- 2 Method -- 2.1 Attention Generator -- 2.2 Contrastive Learning Module -- 2.3 Synergic Learning Module -- 2.4 Learning Attentive Contrast Learning Networks -- 3 Experiments -- 3.1 Datasets -- 3.2 Implementation Details -- 3.3 Ablation Study -- 3.4 Comparison with Other Methods -- 3.5 Visualization Results -- 4 Conclusion -- References -- Relation-Based Knowledge Distillation for Anomaly Detection -- 1 Introduction -- 2 Related Work -- 2.1 CAE-Based Methods. 2.2 GAN-Based Methods -- 2.3 KD-Based Methods -- 3 Method -- 3.1 Gram Matrix and the "FSP Matrix" -- 3.2 The Proposed Approach -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Datasets -- 4.3 Results -- 5 Conclusion -- References -- High Power-Efficient and Performance-Density FPGA Accelerator for CNN-Based Object Detection -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 System Framework -- 3.2 Neural Network Accelerator -- 4 Experiments -- 5 Conclusion -- References -- Relation-Guided Actor Attention for Group Activity Recognition -- 1 Introduction -- 2 Related Works -- 3 Method -- 3.1 Location-Aware Relation Module -- 3.2 Relation-Guided Actor Attention Module -- 3.3 Classification Layer -- 4 Experiments -- 4.1 Datasets and Implementation Details -- 4.2 Ablation Study -- 4.3 Comparison with the State-of-the-Arts -- 5 Conclusion -- References -- MVAD-Net: Learning View-Aware and Domain-Invariant Representation for Baggage Re-identification -- 1 Introduction -- 2 Related Works -- 2.1 Representation Learning and Metric Learning in ReID -- 2.2 View-Based Methods for ReID -- 2.3 Domain Adaptation -- 3 The Proposed Method -- 3.1 Baggage ReID Baseline -- 3.2 Multi-view Attention Model -- 3.3 Domain-Invariant Learning -- 4 Experiments -- 4.1 Dataset and Protocols -- 4.2 Implementation Details -- 4.3 Effectiveness of Multi-view Attention -- 4.4 Effectiveness of Domain-Invariant Learning -- 4.5 Comparison with Other Methods -- 5 Conclusion -- References -- Joint Attention Mechanism for Unsupervised Video Object Segmentation -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Joint Attention Mechanism -- 3.2 Network Architecture -- 4 Experiments -- 4.1 Datasets and Evaluation -- 4.2 Ablation Study -- 4.3 Comparison to the State-Of-The-Arts -- 5 Conclusion -- References -- Foreground Feature Selection and Alignment for Adaptive Object Detection. 1 Introduction -- 2 Related Work -- 2.1 Object Detection -- 2.2 Adaptive Object Detection -- 3 Method -- 3.1 Framework Overview -- 3.2 Foreground Selection Module -- 3.3 Multi-level Domain Adaptation -- 3.4 Overall Objective -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Adaptation Results -- 4.3 Visualization and Discussion -- 5 Conclusions -- References -- Exploring Category-Shared and Category-Specific Features for Fine-Grained Image Classification -- 1 Introduction -- 2 Proposed Method -- 2.1 Category-Shared Feature Extraction Module -- 2.2 Category-Specific Feature Extraction Module -- 3 Experiment -- 3.1 Implementation Details -- 3.2 Experimental Results -- 3.3 Ablation Studies -- 3.4 Visualizations -- 4 Conclusions -- References -- Deep Mixture of Adversarial Autoencoders Clustering Network -- 1 Introduction -- 2 Mixture of Adversarial Autoencoders -- 2.1 Adversarial Block -- 2.2 Target Distribution -- 2.3 Loss Function -- 2.4 Training Procedure -- 3 Experiment -- 3.1 Clustering Results -- 3.2 Reconstruct and Generate -- 4 Conclusion -- References -- SA-InterNet: Scale-Aware Interaction Network for Joint Crowd Counting and Localization -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Scale-Aware Feature Extractor -- 3.2 Density-Localization Interaction Module -- 3.3 Loss Function -- 4 Experiments -- 4.1 Datasets -- 4.2 Evaluation Metrics -- 4.3 Implementation Details -- 4.4 Comparison with State-of-the-Arts -- 4.5 Ablation Study -- 5 Conclusion -- References -- Conditioners for Adaptive Regression Tracking -- 1 Introduction -- 2 Related Work -- 2.1 One-Stage Visual Tracking -- 2.2 Conditional Instance Learning -- 3 The Proposed Conditional Regression Tracking -- 3.1 Conditional Batch Normalization -- 3.2 Visual Context and Trajectory Formulating -- 3.3 Visual Context Network -- 3.4 Trajectory Network. 3.5 Implementation, Training and Inference -- 4 Experiments -- 4.1 Ablation Study -- 5 Conclusions -- References -- Attention Template Update Model for Siamese Tracker -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Traditional Update -- 3.2 Network Architecture -- 3.3 Adjustment and Update Blocks -- 3.4 Channel Attention Block -- 3.5 Training Model -- 4 Experiment -- 4.1 Implementation Details -- 4.2 Checkpoint Selection -- 4.3 Performance in Several Benchmarks -- 4.4 Ablation Studies -- 5 Conclusion -- References -- Insight on Attention Modules for Skeleton-Based Action Recognition -- 1 Introduction -- 2 Related Work -- 2.1 Skeleton-Based Action Recognition -- 2.2 Attention Mechanisms -- 3 Multi-category Attention Modules -- 3.1 Spatial-Wise Attention Module -- 3.2 Temporal-Wise Attention Module -- 3.3 Spatiotemporal Attention Module -- 4 Experiments -- 4.1 Datasets -- 4.2 Ablation Studies -- 4.3 Comparison with the State-of-the-Art -- 5 Conclusions -- References -- AO-AutoTrack: Anti-occlusion Real-Time UAV Tracking Based on Spatio-temporal Context -- 1 Introduction -- 2 Related Work -- 2.1 Discriminative Correlation Filter Tracking Algorithm -- 2.2 Anti-occlusion Object Tracking -- 2.3 DCF Onboard UAV -- 3 Proposed Tracking Approach -- 3.1 Review AutoTrack -- 3.2 Temporal Regularization Analysis and Improvement -- 3.3 Re-detection Mechanism -- 4 Experiment -- 4.1 Implementation Details -- 4.2 Comparison with Hand-Crafted Based Trackers -- 4.3 Re-detection Evaluation -- 5 Conclusions -- References -- Two-Stage Recognition Algorithm for Untrimmed Converter Steelmaking Flame Video -- 1 Introduction -- 2 Related Works -- 3 Method -- 3.1 Feature Extraction -- 3.2 Recognition for Untrimmed Flame Videos -- 4 Experiments -- 4.1 Datasets -- 4.2 Implemented Details -- 4.3 Data Analysis -- 5 Conclusion -- References. Scale-Aware Multi-branch Decoder for Salient Object Detection. |
Record Nr. | UNISA-996464395903316 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Pattern recognition and computer vision . Part II : 4th Chinese Conference, PRCV 2021, Beijing, China, October 29-November 1, 2021, Proceedings / / Huimin Ma [and seven others] (editors) |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (694 pages) |
Disciplina | 006.4 |
Collana | Lecture notes in computer science |
Soggetto topico |
Pattern recognition systems
Computer vision |
ISBN | 3-030-88007-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part II -- Computer Vision, Theories and Applications -- Dynamic Fusion Network for Light Field Depth Estimation -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 The Overall Architecture -- 3.2 Pyramid ConvGRU -- 3.3 Multi-modal Dynamic Fusion Module (MDFM) -- 4 Experiments -- 4.1 Experiments Setup -- 4.2 Ablation Studies -- 4.3 Comparison with State-of-the-arts -- 5 Conclusion -- References -- Metric Calibration of Aerial On-Board Multiple Non-overlapping Cameras Based on Visual and Inertial Measurement Data -- 1 Introduction -- 2 Related Works -- 3 Metric Calibration Based on Visual and Inertial Measurement Data -- 3.1 Notation and Problem Formulation -- 3.2 Relative Pose Estimation via Structure from Motion -- 3.3 Inertial Measurement Data Based Metric Scale Factor Estimation -- 4 Experimental Results -- 4.1 Equipment -- 4.2 Metric Calibration of the Aerial On-Board Non-overlapping Camera System -- 4.3 Metric Calibration of an Industrial Non-overlapping Camera System -- 4.4 Experiments of Applications for Object Metric 3D Reconstruction -- 5 Conclusions -- References -- SEINet: Semantic-Edge Interaction Network for Image Manipulation Localization -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Cross Interaction Pattern -- 3.2 Aggregate Interaction Module -- 3.3 Bidirectional Fusion Module -- 3.4 Training Loss -- 4 Experiments -- 4.1 Datasets and Implementation Details -- 4.2 Evaluation Metrics -- 4.3 Ablation Studies -- 4.4 Robustness Analysis -- 4.5 Comparing with State-of-the-Art -- 5 Conclusion -- References -- Video-Based Reconstruction of Smooth 3D Human Body Motion -- 1 Introduction -- 2 Related Work -- 2.1 3D Human Mesh from Single Images -- 2.2 3D Human Mesh from Video -- 2.3 GANs for Modeling -- 3 Approach -- 3.1 3D Body Representation -- 3.2 Temporal Encoder.
3.3 Constraint Loss -- 3.4 Motion Discriminator -- 4 Experiments -- 4.1 Implement Details -- 4.2 Comparison to Other Methods -- 4.3 Ablation Experiments -- 5 Conclusion -- References -- A Unified Modular Framework with Deep Graph Convolutional Networks for Multi-label Image Recognition -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Image Feature Extraction Module -- 3.2 Label Semantic Extraction Module -- 3.3 Prediction Results and Training Scheme -- 4 Experiments -- 4.1 Evaluation Metrics -- 4.2 Implementation Details -- 4.3 Experimental Results -- 4.4 Ablation Studies -- 4.5 Adjacency Matrix Visualization -- 5 Conclusion -- References -- 3D Correspondence Grouping with Compatibility Features -- 1 Introduction -- 2 Related Work -- 2.1 3D Correspondence Grouping -- 2.2 Learning for Correspondence Grouping -- 3 Methodology -- 3.1 Compatibility Check -- 3.2 CF Feature Extraction -- 3.3 CF Classification -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Method Analysis -- 4.3 Comparative Results and Visualization -- 5 Conclusions -- References -- Contour-Aware Panoptic Segmentation Network -- 1 Introduction -- 2 Related Work -- 3 Approach -- 3.1 Panoptic Contour Branch -- 3.2 Panoptic Segmentation Branch -- 3.3 Structure Loss Function -- 4 Experiments -- 4.1 Dataset -- 4.2 Evaluation Metrics -- 4.3 Implementation Details -- 4.4 Comparisons with Other Methods -- 4.5 Ablative Analysis -- 5 Conclusion -- References -- VGG-CAE: Unsupervised Visual Place Recognition Using VGG16-Based Convolutional Autoencoder -- 1 Introduction -- 2 Realted Work -- 2.1 Handcraft-Based Methods -- 2.2 CNN-Based Methods -- 2.3 AE-Based Methods -- 3 VGG16-Based Convolutional Autoencoder -- 3.1 Model Architecture -- 3.2 Training -- 3.3 Matching -- 4 Experiments -- 4.1 Datasets -- 4.2 State-of-the-Art Approaches -- 4.3 Ground Truth -- 4.4 Comparison and Discussion. 5 Conclusion -- References -- Slice Sequential Network: A Lightweight Unsupervised Point Cloud Completion Network -- 1 Introduction -- 2 Related Work -- 2.1 3D Learning -- 2.2 3D Completion -- 3 Our Method -- 3.1 Overview -- 3.2 Slicer -- 3.3 Multi-scale Point Encoder -- 3.4 Sequential Predictor -- 3.5 Shape Prediction Decoder -- 3.6 Loss Function -- 4 Experiments -- 4.1 Datasets and Implementation Details -- 4.2 Point Cloud Completion Results -- 4.3 Analysis of Encoder -- 4.4 Robustness to Occlusion -- 4.5 Comparison of Complexity -- 5 Ablation Study -- 6 Conclusion -- References -- From Digital Model to Reality Application: A Domain Adaptation Method for Rail Defect Detection -- 1 Introduction -- 2 Preliminaries -- 3 Method -- 3.1 DT-Based Virtual Data Generation -- 3.2 Dummy-Target Domain -- 3.3 DA-YOLO -- 4 Experiment -- 4.1 Dataset and Evaluation Metrics -- 4.2 Experiment Settings -- 4.3 Experimental Results -- 5 Conclusion -- References -- FMixAugment for Semi-supervised Learning with Consistency Regularization -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 FMixAugment: MixAugment Combined with FMask -- 3.2 Improved Consistency Regularization -- 3.3 Dynamic Growth Threshold -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Experimental Results -- 4.3 Ablation Study -- 5 Conclusion and Future Work -- References -- IDANet: Iterative D-LinkNets with Attention for Road Extraction from High-Resolution Satellite Imagery -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Overview -- 3.2 Basic Iteration Module -- 3.3 Iterative Architecture -- 4 Experiment -- 4.1 Datasets -- 4.2 Implementation Details -- 5 Results -- 5.1 Comparison of Road Segmentation Methods -- 5.2 Ablation Experiment -- 5.3 The Influence of Network Iteration -- 6 Conclusion -- References. Disentangling Deep Network for Reconstructing 3D Object Shapes from Single 2D Images -- 1 Introduction -- 2 Related Works -- 3 Disentangling Deep Network -- 3.1 Network Architecture -- 3.2 Learning Objective Functions -- 3.3 Training Strategy -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Ablation Analysis -- 4.3 3D Reconstruction -- 4.4 Effects of 3D Shape Identity -- 5 Conclusion -- References -- AnchorConv: Anchor Convolution for Point Clouds Analysis -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 AnchorConv -- 3.2 Anchor Reweighting Module -- 3.3 Network Architectures -- 4 Experiments -- 4.1 Classification on ModelNet40 -- 4.2 ShapeNet Part Segmentation -- 4.3 3D Segmentation of Indoor Scene -- 4.4 3D Segmentation of Outdoor Scene -- 4.5 Ablation Study -- 4.6 Qualitative Results -- 5 Conclusion -- References -- IFR: Iterative Fusion Based Recognizer for Low Quality Scene Text Recognition -- 1 Introduction -- 2 Related Works -- 3 Method -- 3.1 Iterative Collaboration -- 3.2 Fusion Module RRF -- 3.3 Loss Functions -- 3.4 Paired Training Data Generate -- 4 Experiments -- 4.1 Datasets and Implementation Details -- 4.2 Ablation Study -- 4.3 Comparisons with State-of-the-Arts -- 5 Conclusion -- References -- Immersive Traditional Chinese Portrait Painting: Research on Style Transfer and Face Replacement -- 1 Introduction -- 2 Related Work -- 2.1 Neural Style Transfer -- 2.2 Face Replacement -- 3 The P-CP Method -- 3.1 Network Architecture -- 3.2 Neural Style Transfer Network -- 3.3 Face Replacement -- 4 Experiment -- 4.1 Comparison of Different Traditional Chinese Painting Styles -- 4.2 Image Detail Exploration and Optimization -- 4.3 Improvement of Face Replacement with Style Transfer -- 5 Conclusion -- References -- Multi-camera Extrinsic Auto-calibration Using Pedestrians in Occluded Environments -- 1 Introduction. 2 Related Work -- 3 Calibration Based on 3D Positions -- 3.1 3D Head Positions in Local Camera Coordinates -- 3.2 Registration of 3D Point Sets -- 4 Refinement -- 5 Experiments and Results -- 6 Conclusion -- References -- Dual-Layer Barcodes -- 1 Introduction -- 2 Related Work -- 2.1 Steganography -- 2.2 Watermarking -- 2.3 Barcode -- 3 Method -- 3.1 Encoder -- 3.2 Decoder -- 3.3 Noise Layer -- 3.4 Discriminator -- 4 Experiments and Analysis -- 4.1 Dataset and Experimental Setting -- 4.2 Implementation Details -- 4.3 Metrics -- 5 Discussion -- 6 Conclusion -- References -- Graph Matching Based Robust Line Segment Correspondence for Active Camera Relocalization -- 1 Introduction -- 2 Method -- 2.1 System Overview -- 2.2 Robust Line Segment Matching -- 2.3 Active Camera Relocation -- 3 Experiments -- 3.1 Experimental Setup -- 3.2 Analysis of Line Segment Matching -- 3.3 Analysis of Relocalization Accuracy and Convergence Speed -- 3.4 Analysis of Robustness in Hard Scenes -- 4 Conclusion -- References -- Unsupervised Learning Framework for 3D Reconstruction from Face Sketch -- 1 Introduction -- 2 Related Work -- 2.1 Image-to-Image Translation -- 2.2 3D Shape Reconstruction -- 3 Method -- 3.1 Dataset Construction -- 3.2 Network Architecture -- 3.3 Loss Functions -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Quantitative Results and Ablation Study -- 4.3 Qualitative Results -- 5 Conclusion -- References -- HEI-Human: A Hybrid Explicit and Implicit Method for Single-View 3D Clothed Human Reconstruction -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Overview -- 3.2 Explicit Model -- 3.3 Implicit Model -- 3.4 Loss Functions -- 4 Experiments -- 4.1 Dataset and Protocol -- 4.2 Training Details -- 4.3 Quantitative Results -- 4.4 Qualitative Results -- 4.5 Ablation Studies -- 5 Conclusions -- References. A Point Cloud Generative Model via Tree-Structured Graph Convolutions for 3D Brain Shape Reconstruction. |
Record Nr. | UNISA-996464410803316 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|