Vai al contenuto principale della pagina

Control and communication for demand response with thermostatically controlled loads / / Kai Ma [and three others]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Ma Kai Visualizza persona
Titolo: Control and communication for demand response with thermostatically controlled loads / / Kai Ma [and three others] Visualizza cluster
Pubblicazione: Singapore : , : Springer, , [2023]
©2023
Descrizione fisica: 1 online resource (197 pages)
Disciplina: 517.5
Soggetto topico: Control theory
Power electronics
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Background -- 1.2 System Model -- 1.2.1 Load Control Model -- 1.2.2 Communication Network Model -- 1.3 Problems Studied in This Book -- 1.3.1 Load Control and Optimization Strategy -- 1.3.2 Communication Network and Resource Allocation -- 1.4 Summary -- Part I Load Control and Optimization Strategies -- 2 Switching Control Strategies of Aggregated Commercial HVAC Systems for Demand Response -- 2.1 Introduction -- 2.2 System Model and Control Strategies -- 2.2.1 Individual HVAC Model -- 2.2.2 Typical Control Strategies -- 2.2.3 Switching Control Model -- 2.3 Controller Design and Optimization -- 2.3.1 Parameter Optimization -- 2.3.2 Switching Control Strategies I and II -- 2.3.3 Switching Control Strategy III -- 2.4 Simulations -- 2.5 Conclusions -- 3 Hybrid Control Strategy of Aggregated TCLs for Demand Response -- 3.1 Introduction -- 3.2 System Modeling -- 3.3 Hybrid Control Strategies -- 3.3.1 Step Rule of the On/Off Control -- 3.3.2 Parameter Optimization of the Setpoint-Regulation Control -- 3.3.3 Parallel and Cascade Control Structures -- 3.3.4 Control Framework -- 3.4 Simulation Results -- 3.4.1 Evaluation of the Step Rule -- 3.4.2 Optimization of the Control Parameters -- 3.4.3 Computation of the Allocation Proportions -- 3.4.4 Comparison of the Control Strategies -- 3.4.5 Sensitivity Analysis for the Thermal Capacitance -- 3.4.6 Different Temperature Bands Under the On/Off Control -- 3.5 Conclusions -- 4 Fuzzy Neural Network Control Strategy of Aggregated TCLs for Demand Response -- 4.1 Introduction -- 4.2 Problem Formulation -- 4.2.1 Individual TCL Characteristic -- 4.2.2 Frequency Regulation Problem -- 4.3 Fuzzy Neural Network Controller -- 4.3.1 Fuzzy Neural Network Structure -- 4.3.2 Fuzzy Neural Network Learning Algorithm.
4.3.3 Optimization of Initial Value of Adjustable Parameters -- 4.4 Simulation Results -- 4.5 Conclusion -- 5 Optimal Control of Aggregated TCLs Based on Tracking Differentiator -- 5.1 Introduction -- 5.2 System Model -- 5.2.1 Thermal Dynamics of Individual TCL -- 5.2.2 Thermal Dynamics of Aggregated TCLs -- 5.2.3 Frequency Regulation -- 5.3 Problem Formulation -- 5.3.1 Regulation Cost -- 5.3.2 Discomfort Cost -- 5.4 Effective Control Strategy Based on TD -- 5.4.1 Control Strategy Design -- 5.4.2 Implementation -- 5.5 Simulation Results -- 5.5.1 Tracking Performance -- 5.5.2 Grouping Performance -- 5.6 Conclusion -- 6 Optimizing Regulation of Aggregated TCLs Based on Multi-Swarm PSO -- 6.1 Introduction -- 6.2 System Model and Problem Formulation -- 6.2.1 Individual TCL Model -- 6.2.2 Problem Formulation -- 6.3 Optimal Solutions -- 6.3.1 Mapping -- 6.3.2 Binary DMS-PSO-CLS -- 6.4 Simulation Results -- 6.4.1 Case Comparisons -- 6.4.2 Parameter Analysis -- 6.5 Conclusion -- Part II Communication Network and Resource Allocation -- 7 Communication Network and Cost Modeling -- 7.1 Communication Network Model -- 7.1.1 Two-tier Communication Network -- 7.1.2 Cooperative Relaying Network -- 7.1.3 Packet Loss Model -- 7.2 Cost Modeling -- 7.2.1 Cost Modeling Based on Taguchi Loss Function -- 7.2.2 Cost Modeling Based on Regular Errors -- 7.3 Conclusion -- 8 Bandwidth Allocation for Cooperative Relaying Network -- 8.1 Introduction -- 8.2 Preliminaries -- 8.3 System Model -- 8.4 Bargaining Models and Solutions -- 8.4.1 Problem Formulation -- 8.4.2 Case Study -- 8.4.3 Model Extension -- 8.5 Simulation Results -- 8.6 Conclusion -- 9 Distributed Power Allocation and Relay Selection for Cooperative Relaying Network -- 9.1 Introduction -- 9.2 Noncooperative Game -- 9.3 System Model -- 9.3.1 Demand Response and Electricity Cost -- 9.3.2 Transmission Rates.
9.4 Stackelberg Game Formulation and Analysis -- 9.4.1 Stackelberg Game Modeling -- 9.4.2 Payment Selection Game -- 9.4.3 Maximizing Profits of Telecom Operators -- 9.4.4 Relaying Conditions -- 9.4.5 Strategy Design for Relaying Group with One DAU -- 9.5 Implementation Protocols -- 9.5.1 Heuristic Algorithm -- 9.5.2 Potential Realization in 5G Networks -- 9.6 Simulation Results -- 9.6.1 DAU Assignment, Transmission Power Allocation and Payment Selection -- 9.6.2 Cost Reduction and Profit Improvement -- 9.7 Conclusion -- 10 Centralized Power Allocation and Relay Selection for Cooperative Relaying Network -- 10.1 Introduction -- 10.2 System Description -- 10.2.1 Demand-Side Cooperative Communication Network -- 10.2.2 Packet Loss Model and Costs to Utility Company -- 10.3 System Model and Solutions -- 10.4 MS-ABC Algorithm -- 10.5 Simulation Results -- 10.5.1 Comparisons Between MS-ABC and I-ABC -- 10.5.2 Relay Assignment and Power Allocation Under Case C -- 10.6 Conclusion -- 11 Interference Management and Power Control for Cognitive Radio Network -- 11.1 Introduction -- 11.2 System Model -- 11.3 Problem Formulation -- 11.4 Stackelberg Game Formulation an Analysis -- 11.4.1 The Optimal Strategies of Gateways -- 11.4.2 The Convergence of ADPP -- 11.4.3 The Optimal Solution of PBS -- 11.4.4 A Modified Distributed Power Control Method -- 11.5 Simulation Results -- 11.6 Conclusion -- 12 Power Allocation for Relaying-Based Cognitive Radio Network -- 12.1 Introduction -- 12.2 Cognitive Wireless Network Model in Smart Grid -- 12.2.1 Cognitive Wireless Network -- 12.2.2 Transmission Formulation of The Network -- 12.3 Problem Formulation and Solutions -- 12.3.1 PSO Algorithm -- 12.3.2 The Solution with One Relay -- 12.4 Simulation Results -- 12.5 Conclusion -- 13 Spectrum Allocation and Power Allocation for Relaying-Based Cognitive Radio Network.
13.1 Introduction -- 13.2 Cooperative and Cognitive Network Model -- 13.2.1 Confidence Level of Sub-bands -- 13.2.2 Receiving Rates of DAUs -- 13.3 Cost Modeling and Minimization -- 13.3.1 Cost Modeling -- 13.3.2 Spectrum Allocation -- 13.3.3 Relay Power Optimization -- 13.3.4 Spectrum Allocation and Relay Power Optimization Algorithm -- 13.4 Simulation Results -- 13.5 Conclusion -- Appendix References.
Titolo autorizzato: Control and communication for demand response with thermostatically controlled loads  Visualizza cluster
ISBN: 981-19-6876-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910634039903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui