Wireless automation as an enabler for the next industrial revolution / / edited by Muhammad Ali Imran, Sajid Hussain, Qammer H. Abbasi
| Wireless automation as an enabler for the next industrial revolution / / edited by Muhammad Ali Imran, Sajid Hussain, Qammer H. Abbasi |
| Autore | MUHAMMAD A. IMRAN; SAJJAD HUSSAIN; QAMMER H. ABBAS |
| Pubbl/distr/stampa | HOBOKEN : , : JOHN WILEY, , 2019 |
| Descrizione fisica | 1 online resource (285 pages) |
| Disciplina | 681.2 |
| Soggetto topico | Wireless sensor networks |
| ISBN |
1-119-55262-1
1-119-55263-X 1-119-55258-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
List of Contributors xiii -- Preface xvii -- 1 Industrial Wireless Sensor Networks Overview 1 / Mohsin Raza and Huan X. Nguyen -- 1.1 Introduction 1 -- 1.2 Industry 4.0 3 -- 1.3 Industrial Wireless Sensor Networks (IWSNs) 6 -- 1.4 Applications of IWSNs 8 -- 1.4.1 Feedback Control Systems 8 -- 1.4.2 Motion and Robotics 9 -- 1.4.3 Safety Applications 9 -- 1.4.4 Environmental Monitoring 9 -- 1.4.5 Machine/Structural Health Monitoring 10 -- 1.5 Communication Topologies in IWSNs 10 -- 1.6 Research Developments and Communications Standards for Industry 11 -- 1.6.1 IEEE 802.15.4 12 -- 1.6.2 IEEE 802.15.4e 13 -- 1.6.3 Zigbee 13 -- 1.6.4 WirelessHART 14 -- 1.6.5 ISA100.11a 14 -- 1.6.6 6LoWPAN 14 -- Bibliography 15 -- 2 Life-span Extension for Sensor Networks in the Industry 19 / Metin Ozturk, Mona Jaber, and Muhammad A. Imran -- 2.1 Introduction 19 -- 2.2 Wireless Sensor Networks 21 -- 2.3 Industrial WSNs 24 -- 2.3.1 Requirements and Challenges 25 -- 2.3.2 Protocols and Standards 26 -- 2.3.3 IWSN Applications 27 -- 2.4 Life-span Extension for WSNs 28 -- 2.4.1 Energy Harvesting 29 -- 2.4.1.1 Solar Energy Harvesting 31 -- 2.4.1.2 Wind Energy Harvesting 31 -- 2.4.1.3 Radio Frequency Energy Harvesting 32 -- 2.4.1.4 Piezoelectric Energy Harvesting 32 -- 2.4.1.5 Thermal Energy Harvesting 33 -- 2.4.2 Energy Conservation 33 -- 2.4.2.1 Duty Cycling 34 -- 2.4.2.2 Data Driven Approaches 35 -- 2.4.2.3 Mobility Based Approaches 35 -- 2.4.2.4 Q Learning Assisted Energy Efficient Smart Connectivity 36 -- 2.5 Conclusion 40 -- Bibliography 41 -- 3 Multiple Access and Resource Sharing for Low Latency Critical Industrial Networks 47 / Mohsin Raza, Anas Amjad, and Sajjad Hussain -- 3.1 Introduction 47 -- 3.2 Research Developments 51 -- 3.2.1 CSMA/CA Based MAC Schemes 53 -- 3.2.2 TDMA Based MAC Schemes 53 -- 3.2.3 Multichannel MAC Schemes 54 -- 3.2.4 Priority Based MAC Schemes 55 -- 3.3 Priority Based Information Scheduling and Transmission 56 -- 3.4 Summary 61 -- Bibliography 61 -- 4 Narrowband Internet of Things (NB-IoT) for Industrial Automation 65 / Hassan Malik, Muhammad Mahtab Alam, Alar Kuusik, Yannick Le Moullec, and Sven P©Þrand.
4.1 Introduction 65 -- 4.2 Overview of NB-IoT 65 -- 4.3 NB-IoT Design Characteristics 68 -- 4.3.1 Low Device Complexity and Low Cost 68 -- 4.3.2 Coverage Enhancement (CE) 70 -- 4.3.3 Long Device Battery Lifetime 70 -- 4.3.4 Massive Device Support 71 -- 4.3.5 Deployment Flexibility 72 -- 4.3.6 Small Data Packet Transmission Support 74 -- 4.3.6.1 Control Plane CIoT EPS Optimization (CP) 74 -- 4.3.6.2 User Plane CIoT EPS Optimization (UP) 76 -- 4.3.7 Multicast Transmission Support 76 -- 4.3.8 Mobility Support 76 -- 4.4 NB-IoT Frame Structure 77 -- 4.4.1 Downlink Transmission Scheme 78 -- 4.4.1.1 Narrowband Reference Signal (NRS) 78 -- 4.4.1.2 Narrowband Primary and Secondary Synchronization Signals (NPSS and NSSS) 78 -- 4.4.1.3 Narrowband Physical Broadcast Channel (NPBCH) 79 -- 4.4.1.4 Narrowband Physical Downlink Control Channel (NPDCCH) 79 -- 4.4.1.5 Narrowband Physical Downlink Shared Channel (NPDSCH) 80 -- 4.4.2 Uplink Transmission Scheme 80 -- 4.4.2.1 Demodulation Reference Signal (DMRS) 80 -- 4.4.2.2 Narrowband Physical Random Access Channel (NPRACH) 81 -- 4.4.2.3 Narrowband Uplink Shared Channel (NPUSCH) 81 -- 4.4.3 NB-IoT Design Modification in Relation to LTE 81 -- 4.5 NB-IoT as an Enabler for Industry 4.0 81 -- 4.5.1 Process Automation 83 -- 4.5.2 HumańôMachine Interfaces 84 -- 4.5.3 Logistics and Warehousing 84 -- 4.5.4 Maintenance and Monitoring 85 -- 4.6 Summary 85 -- Bibliography 86 -- 5 Ultra Reliable Low Latency Communications as an Enabler For Industry Automation 89 / Jo©úo Pedro Battistella Nadas, Guodong Zhao, Richard Demo Souza, and Muhammad A. Imran -- 5.1 Introduction 89 -- 5.2 Opportunities for URLLC in Industry Automation 91 -- 5.2.1 URLLC Industrial Applications 91 -- 5.2.2 New Business Models 93 -- 5.3 Existing Solutions 94 -- 5.3.1 LTE 94 -- 5.3.2 WirelessHART and ISA100.11a 95 -- 5.4 Enabling Technologies 96 -- 5.4.1 Faster Channel Coding 96 -- 5.4.2 Latency Aware HARQ 97 -- 5.4.3 Joint Design 98 -- 5.4.3.1 Communication Model 100 -- 5.4.3.2 Proposed Solution 100. 5.4.3.3 Numerical Results and Conclusion 103 -- 5.5 Conclusion 104 -- Bibliography 104 -- 6 Anomaly Detection and Self-healing in Industrial Wireless Networks 109 / Ahmed Zoha, Qammer H. Abbasi, and Muhammad A. Imran -- 6.1 Introduction 109 -- 6.2 System Design 113 -- 6.2.1 COD Stage 113 -- 6.2.2 COC Stage 115 -- 6.3 Cell Outage Detection Framework 115 -- 6.3.1 Profiling Phase 115 -- 6.3.1.1 Local Outlier Factor Based Detector (LOFD) 119 -- 6.3.1.2 One-Class Support Vector Machine based Detector (OCSVMD) 120 -- 6.3.2 Detection and Localization Phase 122 -- 6.4 Cell Outage Compensation 122 -- 6.5 Simulation Results 124 -- 6.5.1 Simulation Setup 124 -- 6.5.1.1 Parameter Estimation and Evaluation 124 -- 6.5.2 Cell Outage Detection Results 127 -- 6.5.3 Localization 135 -- 6.5.4 Compensation 136 -- 6.6 Conclusion 138 -- Bibliography 138 -- 7 Cost Efficiency Optimization for Industrial Automation 141 / Hafiz Husnain Raza Sherazi, Luigi Alfredo Grieco, Gennaro Boggia, and Muhammad A. Imran -- 7.1 Introduction 141 -- 7.2 The Evolution of Low Energy Networking Protocols for Industrial Automation 144 -- 7.2.1 Radio Frequency Identification and Near Field Communication 144 -- 7.2.2 Bluetooth 145 -- 7.2.3 Zigbee 145 -- 7.2.4 Bluetooth Low Energy (BLE) 145 -- 7.2.5 Wi-Fi 146 -- 7.2.6 IPv6 Over Low Power Wireless Personal Area Networks (6LoWPAN) 146 -- 7.2.7 Low Power Wide Area Networks (LPWAN) 146 -- 7.2.7.1 Long Range Wide Area Networks (LoRaWAN) 148 -- 7.2.7.2 Sigfox 149 -- 7.2.7.3 Narrowband IoT (NB-IoT) 150 -- 7.3 An Overview of the Costs Involved in Industry 4.0 151 -- 7.3.1 Battery Replacement Cost 152 -- 7.3.2 Damage Penalty 152 -- 7.3.3 Cost Relationships and Trade-off Analysis 152 -- 7.4 Evaluating Costs in an Industrial Environment: A LoRaWAN Case study 153 -- 7.4.1 Battery Lifetime of Monitoring Nodes 155 -- 7.4.2 Battery Replacement Cost 156 -- 7.4.3 Damage Penalty 157 -- 7.5 Cost Analysis for Industrial Automation 158 -- 7.5.1 Statistics for Energy Consumption 158. 7.5.2 Statistics for Battery Replacement Cost 159 -- 7.5.3 Statistics for Damage Penalty in a Plain Industrial Environment 161 -- 7.5.4 The Cumulative Cost 163 -- 7.6 Cost Optimization through Energy Harvesting in Industrial Automation 164 -- 7.6.1 Extending the Battery Lifetime 165 -- 7.6.2 Tuning the Sensing Interval 165 -- 7.7 Conclusion 168 -- Bibliography 168 -- 8 A Non-Event Based Approach for Non-Intrusive Load Monitoring 173 / Ahmed Zoha, Qammer H. Abbasi, and Muhammad A. Imran -- 8.1 Introduction 173 -- 8.2 Probabilistic Modelling for Load Disaggregation 175 -- 8.2.1 Model Definition 177 -- 8.2.2 Inference 178 -- 8.3 Experimental Evaluations 180 -- 8.3.1 Experiment Design 181 -- 8.3.2 Feature Sub-Groups 182 -- 8.3.3 Performance Evaluation 183 -- 8.3.3.1 Binary and Multi-State Classification 183 -- 8.4 Live Deployment 187 -- 8.4.1 Energy Estimation 188 -- 8.5 Conclusion 190 -- Bibliography 191 -- 9 Wireless Networked Control 193 / Zhen Meng and Guodong Zhao -- 9.1 Introduction 193 -- 9.2 Industrial Automation 194 -- 9.3 WNC System Model 196 -- 9.3.1 WNC Model 196 -- 9.3.1.1 Wireless Networks 197 -- 9.3.1.2 Control System 198 -- 9.3.2 WNC System Requirements 199 -- 9.3.2.1 System Structure 199 -- 9.3.2.2 Real-Time Performance 200 -- 9.3.2.3 High Reliability 201 -- 9.3.2.4 Determinism 201 -- 9.3.2.5 Sample Data Traffic and Event Order 201 -- 9.3.3 Analysis of Influencing Factors 202 -- 9.3.3.1 Sampling Period 202 -- 9.3.3.2 Time Delay 202 -- 9.3.3.3 Packet Loss 203 -- 9.4 Network and System Control Co-design 203 -- 9.5 Conclusion 204 -- Bibliography 204 -- 10 Caching at the Edge in Low Latency Wireless Networks 209 / Ramy Amer, M. Majid Butt, and Nicola Marchetti -- 10.1 Introduction 209 -- 10.2 Living on the Edge 211 -- 10.3 Classifications of Wireless Caching Networks 214 -- 10.3.1 Wireless Caching Architecture 215 -- 10.4 Caching for Low Latency Wireless Networks 217 -- 10.5 Inter-cluster Cooperation for Wireless D2D Caching Networks 218 -- 10.5.1 Proposed Network Model 219. 10.5.2 Content Placement and Traffic Characteristics 222 -- 10.5.3 Caching Problem Formulation 224 -- 10.5.3.1 Arrival and Service Rates 224 -- 10.5.3.2 Network Average Delay 225 -- 10.5.4 Proposed Caching Schemes 226 -- 10.5.4.1 Caching Popular Files 226 -- 10.5.4.2 Greedy Caching Algorithm 227 -- 10.5.4.3 Outage Probability 228 -- 10.6 Results and Discussions 230 -- 10.7 Chapter Summary 234 -- Bibliography 235 -- 11 Application of Terahertz Sensing at Nano-Scale for Precision Agriculture 241 / Adnan Zahid, Hasan T. Abbas, Aifeng Ren, Akram Alomainy, Muhammad A. Imran, and Qammer H. Abbasi -- 11.1 Introduction 241 -- 11.1.1 Limitations of Conventional Methods 243 -- 11.1.2 Transformation from Micro- to Nanotechnology 243 -- 11.1.3 Evolution of Nanotechnology 245 -- 11.1.4 Potential Benefits of Nanotechnology in Agriculture 245 -- 11.1.5 Challenges in Nanotechnology 246 -- 11.1.5.1 Health and Environmental Impacts 246 -- 11.1.5.2 High Production Costs 246 -- 11.1.5.3 Risk Assessment 247 -- 11.1.6 Evolving Applications of Terahertz (THz) Technology 247 -- 11.1.7 Materials and Methods 249 -- 11.1.7.1 Experimental Setup 249 -- 11.1.7.2 Sample 249 -- 11.1.7.3 Thickness of Leaves 250 -- 11.1.8 Measurement Results 250 -- 11.1.8.1 Transmission Response 250 -- 11.1.8.2 Path-loss Response of Leaves 253 -- 11.1.9 Conclusion 254 -- Bibliography 255 -- Index 259. |
| Record Nr. | UNINA-9910555172903321 |
MUHAMMAD A. IMRAN; SAJJAD HUSSAIN; QAMMER H. ABBAS
|
||
| HOBOKEN : , : JOHN WILEY, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Wireless automation as an enabler for the next industrial revolution / / edited by Muhammad Ali Imran, Sajid Hussain, Qammer H. Abbasi
| Wireless automation as an enabler for the next industrial revolution / / edited by Muhammad Ali Imran, Sajid Hussain, Qammer H. Abbasi |
| Autore | MUHAMMAD A. IMRAN; SAJJAD HUSSAIN; QAMMER H. ABBAS |
| Pubbl/distr/stampa | HOBOKEN : , : JOHN WILEY, , 2019 |
| Descrizione fisica | 1 online resource (285 pages) |
| Disciplina | 681.2 |
| Soggetto topico | Wireless sensor networks |
| ISBN |
1-119-55262-1
1-119-55263-X 1-119-55258-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
List of Contributors xiii -- Preface xvii -- 1 Industrial Wireless Sensor Networks Overview 1 / Mohsin Raza and Huan X. Nguyen -- 1.1 Introduction 1 -- 1.2 Industry 4.0 3 -- 1.3 Industrial Wireless Sensor Networks (IWSNs) 6 -- 1.4 Applications of IWSNs 8 -- 1.4.1 Feedback Control Systems 8 -- 1.4.2 Motion and Robotics 9 -- 1.4.3 Safety Applications 9 -- 1.4.4 Environmental Monitoring 9 -- 1.4.5 Machine/Structural Health Monitoring 10 -- 1.5 Communication Topologies in IWSNs 10 -- 1.6 Research Developments and Communications Standards for Industry 11 -- 1.6.1 IEEE 802.15.4 12 -- 1.6.2 IEEE 802.15.4e 13 -- 1.6.3 Zigbee 13 -- 1.6.4 WirelessHART 14 -- 1.6.5 ISA100.11a 14 -- 1.6.6 6LoWPAN 14 -- Bibliography 15 -- 2 Life-span Extension for Sensor Networks in the Industry 19 / Metin Ozturk, Mona Jaber, and Muhammad A. Imran -- 2.1 Introduction 19 -- 2.2 Wireless Sensor Networks 21 -- 2.3 Industrial WSNs 24 -- 2.3.1 Requirements and Challenges 25 -- 2.3.2 Protocols and Standards 26 -- 2.3.3 IWSN Applications 27 -- 2.4 Life-span Extension for WSNs 28 -- 2.4.1 Energy Harvesting 29 -- 2.4.1.1 Solar Energy Harvesting 31 -- 2.4.1.2 Wind Energy Harvesting 31 -- 2.4.1.3 Radio Frequency Energy Harvesting 32 -- 2.4.1.4 Piezoelectric Energy Harvesting 32 -- 2.4.1.5 Thermal Energy Harvesting 33 -- 2.4.2 Energy Conservation 33 -- 2.4.2.1 Duty Cycling 34 -- 2.4.2.2 Data Driven Approaches 35 -- 2.4.2.3 Mobility Based Approaches 35 -- 2.4.2.4 Q Learning Assisted Energy Efficient Smart Connectivity 36 -- 2.5 Conclusion 40 -- Bibliography 41 -- 3 Multiple Access and Resource Sharing for Low Latency Critical Industrial Networks 47 / Mohsin Raza, Anas Amjad, and Sajjad Hussain -- 3.1 Introduction 47 -- 3.2 Research Developments 51 -- 3.2.1 CSMA/CA Based MAC Schemes 53 -- 3.2.2 TDMA Based MAC Schemes 53 -- 3.2.3 Multichannel MAC Schemes 54 -- 3.2.4 Priority Based MAC Schemes 55 -- 3.3 Priority Based Information Scheduling and Transmission 56 -- 3.4 Summary 61 -- Bibliography 61 -- 4 Narrowband Internet of Things (NB-IoT) for Industrial Automation 65 / Hassan Malik, Muhammad Mahtab Alam, Alar Kuusik, Yannick Le Moullec, and Sven P©Þrand.
4.1 Introduction 65 -- 4.2 Overview of NB-IoT 65 -- 4.3 NB-IoT Design Characteristics 68 -- 4.3.1 Low Device Complexity and Low Cost 68 -- 4.3.2 Coverage Enhancement (CE) 70 -- 4.3.3 Long Device Battery Lifetime 70 -- 4.3.4 Massive Device Support 71 -- 4.3.5 Deployment Flexibility 72 -- 4.3.6 Small Data Packet Transmission Support 74 -- 4.3.6.1 Control Plane CIoT EPS Optimization (CP) 74 -- 4.3.6.2 User Plane CIoT EPS Optimization (UP) 76 -- 4.3.7 Multicast Transmission Support 76 -- 4.3.8 Mobility Support 76 -- 4.4 NB-IoT Frame Structure 77 -- 4.4.1 Downlink Transmission Scheme 78 -- 4.4.1.1 Narrowband Reference Signal (NRS) 78 -- 4.4.1.2 Narrowband Primary and Secondary Synchronization Signals (NPSS and NSSS) 78 -- 4.4.1.3 Narrowband Physical Broadcast Channel (NPBCH) 79 -- 4.4.1.4 Narrowband Physical Downlink Control Channel (NPDCCH) 79 -- 4.4.1.5 Narrowband Physical Downlink Shared Channel (NPDSCH) 80 -- 4.4.2 Uplink Transmission Scheme 80 -- 4.4.2.1 Demodulation Reference Signal (DMRS) 80 -- 4.4.2.2 Narrowband Physical Random Access Channel (NPRACH) 81 -- 4.4.2.3 Narrowband Uplink Shared Channel (NPUSCH) 81 -- 4.4.3 NB-IoT Design Modification in Relation to LTE 81 -- 4.5 NB-IoT as an Enabler for Industry 4.0 81 -- 4.5.1 Process Automation 83 -- 4.5.2 HumańôMachine Interfaces 84 -- 4.5.3 Logistics and Warehousing 84 -- 4.5.4 Maintenance and Monitoring 85 -- 4.6 Summary 85 -- Bibliography 86 -- 5 Ultra Reliable Low Latency Communications as an Enabler For Industry Automation 89 / Jo©úo Pedro Battistella Nadas, Guodong Zhao, Richard Demo Souza, and Muhammad A. Imran -- 5.1 Introduction 89 -- 5.2 Opportunities for URLLC in Industry Automation 91 -- 5.2.1 URLLC Industrial Applications 91 -- 5.2.2 New Business Models 93 -- 5.3 Existing Solutions 94 -- 5.3.1 LTE 94 -- 5.3.2 WirelessHART and ISA100.11a 95 -- 5.4 Enabling Technologies 96 -- 5.4.1 Faster Channel Coding 96 -- 5.4.2 Latency Aware HARQ 97 -- 5.4.3 Joint Design 98 -- 5.4.3.1 Communication Model 100 -- 5.4.3.2 Proposed Solution 100. 5.4.3.3 Numerical Results and Conclusion 103 -- 5.5 Conclusion 104 -- Bibliography 104 -- 6 Anomaly Detection and Self-healing in Industrial Wireless Networks 109 / Ahmed Zoha, Qammer H. Abbasi, and Muhammad A. Imran -- 6.1 Introduction 109 -- 6.2 System Design 113 -- 6.2.1 COD Stage 113 -- 6.2.2 COC Stage 115 -- 6.3 Cell Outage Detection Framework 115 -- 6.3.1 Profiling Phase 115 -- 6.3.1.1 Local Outlier Factor Based Detector (LOFD) 119 -- 6.3.1.2 One-Class Support Vector Machine based Detector (OCSVMD) 120 -- 6.3.2 Detection and Localization Phase 122 -- 6.4 Cell Outage Compensation 122 -- 6.5 Simulation Results 124 -- 6.5.1 Simulation Setup 124 -- 6.5.1.1 Parameter Estimation and Evaluation 124 -- 6.5.2 Cell Outage Detection Results 127 -- 6.5.3 Localization 135 -- 6.5.4 Compensation 136 -- 6.6 Conclusion 138 -- Bibliography 138 -- 7 Cost Efficiency Optimization for Industrial Automation 141 / Hafiz Husnain Raza Sherazi, Luigi Alfredo Grieco, Gennaro Boggia, and Muhammad A. Imran -- 7.1 Introduction 141 -- 7.2 The Evolution of Low Energy Networking Protocols for Industrial Automation 144 -- 7.2.1 Radio Frequency Identification and Near Field Communication 144 -- 7.2.2 Bluetooth 145 -- 7.2.3 Zigbee 145 -- 7.2.4 Bluetooth Low Energy (BLE) 145 -- 7.2.5 Wi-Fi 146 -- 7.2.6 IPv6 Over Low Power Wireless Personal Area Networks (6LoWPAN) 146 -- 7.2.7 Low Power Wide Area Networks (LPWAN) 146 -- 7.2.7.1 Long Range Wide Area Networks (LoRaWAN) 148 -- 7.2.7.2 Sigfox 149 -- 7.2.7.3 Narrowband IoT (NB-IoT) 150 -- 7.3 An Overview of the Costs Involved in Industry 4.0 151 -- 7.3.1 Battery Replacement Cost 152 -- 7.3.2 Damage Penalty 152 -- 7.3.3 Cost Relationships and Trade-off Analysis 152 -- 7.4 Evaluating Costs in an Industrial Environment: A LoRaWAN Case study 153 -- 7.4.1 Battery Lifetime of Monitoring Nodes 155 -- 7.4.2 Battery Replacement Cost 156 -- 7.4.3 Damage Penalty 157 -- 7.5 Cost Analysis for Industrial Automation 158 -- 7.5.1 Statistics for Energy Consumption 158. 7.5.2 Statistics for Battery Replacement Cost 159 -- 7.5.3 Statistics for Damage Penalty in a Plain Industrial Environment 161 -- 7.5.4 The Cumulative Cost 163 -- 7.6 Cost Optimization through Energy Harvesting in Industrial Automation 164 -- 7.6.1 Extending the Battery Lifetime 165 -- 7.6.2 Tuning the Sensing Interval 165 -- 7.7 Conclusion 168 -- Bibliography 168 -- 8 A Non-Event Based Approach for Non-Intrusive Load Monitoring 173 / Ahmed Zoha, Qammer H. Abbasi, and Muhammad A. Imran -- 8.1 Introduction 173 -- 8.2 Probabilistic Modelling for Load Disaggregation 175 -- 8.2.1 Model Definition 177 -- 8.2.2 Inference 178 -- 8.3 Experimental Evaluations 180 -- 8.3.1 Experiment Design 181 -- 8.3.2 Feature Sub-Groups 182 -- 8.3.3 Performance Evaluation 183 -- 8.3.3.1 Binary and Multi-State Classification 183 -- 8.4 Live Deployment 187 -- 8.4.1 Energy Estimation 188 -- 8.5 Conclusion 190 -- Bibliography 191 -- 9 Wireless Networked Control 193 / Zhen Meng and Guodong Zhao -- 9.1 Introduction 193 -- 9.2 Industrial Automation 194 -- 9.3 WNC System Model 196 -- 9.3.1 WNC Model 196 -- 9.3.1.1 Wireless Networks 197 -- 9.3.1.2 Control System 198 -- 9.3.2 WNC System Requirements 199 -- 9.3.2.1 System Structure 199 -- 9.3.2.2 Real-Time Performance 200 -- 9.3.2.3 High Reliability 201 -- 9.3.2.4 Determinism 201 -- 9.3.2.5 Sample Data Traffic and Event Order 201 -- 9.3.3 Analysis of Influencing Factors 202 -- 9.3.3.1 Sampling Period 202 -- 9.3.3.2 Time Delay 202 -- 9.3.3.3 Packet Loss 203 -- 9.4 Network and System Control Co-design 203 -- 9.5 Conclusion 204 -- Bibliography 204 -- 10 Caching at the Edge in Low Latency Wireless Networks 209 / Ramy Amer, M. Majid Butt, and Nicola Marchetti -- 10.1 Introduction 209 -- 10.2 Living on the Edge 211 -- 10.3 Classifications of Wireless Caching Networks 214 -- 10.3.1 Wireless Caching Architecture 215 -- 10.4 Caching for Low Latency Wireless Networks 217 -- 10.5 Inter-cluster Cooperation for Wireless D2D Caching Networks 218 -- 10.5.1 Proposed Network Model 219. 10.5.2 Content Placement and Traffic Characteristics 222 -- 10.5.3 Caching Problem Formulation 224 -- 10.5.3.1 Arrival and Service Rates 224 -- 10.5.3.2 Network Average Delay 225 -- 10.5.4 Proposed Caching Schemes 226 -- 10.5.4.1 Caching Popular Files 226 -- 10.5.4.2 Greedy Caching Algorithm 227 -- 10.5.4.3 Outage Probability 228 -- 10.6 Results and Discussions 230 -- 10.7 Chapter Summary 234 -- Bibliography 235 -- 11 Application of Terahertz Sensing at Nano-Scale for Precision Agriculture 241 / Adnan Zahid, Hasan T. Abbas, Aifeng Ren, Akram Alomainy, Muhammad A. Imran, and Qammer H. Abbasi -- 11.1 Introduction 241 -- 11.1.1 Limitations of Conventional Methods 243 -- 11.1.2 Transformation from Micro- to Nanotechnology 243 -- 11.1.3 Evolution of Nanotechnology 245 -- 11.1.4 Potential Benefits of Nanotechnology in Agriculture 245 -- 11.1.5 Challenges in Nanotechnology 246 -- 11.1.5.1 Health and Environmental Impacts 246 -- 11.1.5.2 High Production Costs 246 -- 11.1.5.3 Risk Assessment 247 -- 11.1.6 Evolving Applications of Terahertz (THz) Technology 247 -- 11.1.7 Materials and Methods 249 -- 11.1.7.1 Experimental Setup 249 -- 11.1.7.2 Sample 249 -- 11.1.7.3 Thickness of Leaves 250 -- 11.1.8 Measurement Results 250 -- 11.1.8.1 Transmission Response 250 -- 11.1.8.2 Path-loss Response of Leaves 253 -- 11.1.9 Conclusion 254 -- Bibliography 255 -- Index 259. |
| Record Nr. | UNINA-9910830687903321 |
MUHAMMAD A. IMRAN; SAJJAD HUSSAIN; QAMMER H. ABBAS
|
||
| HOBOKEN : , : JOHN WILEY, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||