Vai al contenuto principale della pagina

Partitional Clustering via Nonsmooth Optimization : Clustering via Optimization / / by Adil M. Bagirov, Napsu Karmitsa, Sona Taheri



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: M. Bagirov Adil Visualizza persona
Titolo: Partitional Clustering via Nonsmooth Optimization : Clustering via Optimization / / by Adil M. Bagirov, Napsu Karmitsa, Sona Taheri Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Edizione: 1st ed. 2020.
Descrizione fisica: 1 online resource (XX, 336 p. 78 illus., 77 illus. in color.)
Disciplina: 515.64
Soggetto topico: Electrical engineering
Pattern perception
Signal processing
Image processing
Speech processing systems
Artificial intelligence
Data mining
Communications Engineering, Networks
Pattern Recognition
Signal, Image and Speech Processing
Artificial Intelligence
Data Mining and Knowledge Discovery
Persona (resp. second.): KarmitsaNapsu
TaheriSona
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Introduction -- Introduction to Clustering -- Clustering Algorithms -- Nonsmooth Optimization Models in Cluster Analysis -- Nonsmooth Optimization -- Optimization based Clustering Algorithms -- Implementation and Numerical Results -- Conclusion.
Sommario/riassunto: This book describes optimization models of clustering problems and clustering algorithms based on optimization techniques, including their implementation, evaluation, and applications. The book gives a comprehensive and detailed description of optimization approaches for solving clustering problems; the authors' emphasis on clustering algorithms is based on deterministic methods of optimization. The book also includes results on real-time clustering algorithms based on optimization techniques, addresses implementation issues of these clustering algorithms, and discusses new challenges arising from big data. The book is ideal for anyone teaching or learning clustering algorithms. It provides an accessible introduction to the field and it is well suited for practitioners already familiar with the basics of optimization. Provides a comprehensive description of clustering algorithms based on nonsmooth and global optimization techniques Addresses problems of real-time clustering in large data sets and challenges arising from big data Describes implementation and evaluation of optimization based clustering algorithms.
Titolo autorizzato: Partitional Clustering via Nonsmooth Optimization  Visualizza cluster
ISBN: 9783030378264
3030378268
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910377822103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Unsupervised and Semi-Supervised Learning, . 2522-848X