top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Functional Membranes : Materials and Applications
Advanced Functional Membranes : Materials and Applications
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa Millersville : , : Materials Research Forum LLC, , 2022
Descrizione fisica 1 online resource (344 pages)
Disciplina 660.2842
Collana Materials Research Foundations
Soggetto topico Membranes (Technology)
ISBN 9781644901816
1644901811
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911009292603321
Inamuddin  
Millersville : , : Materials Research Forum LLC, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Functional Piezoelectric Materials and Applications
Advanced Functional Piezoelectric Materials and Applications
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa Millersville : , : Materials Research Forum LLC, , 2022
Descrizione fisica 1 online resource (290 pages)
Collana Materials Research Foundations
Soggetto topico Piezoelectric materials
ISBN 9781644902097
9781644902080
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Types, Properties and Characteristics of Piezoelectric Materials -- 1. Introduction -- 1.1 Single crystals -- 1.2 Ceramics -- 1.3 Composites -- 1.4 Polymers -- 1.5 Sensor configuration based on shape and size -- 1.6 Classification based on dimension -- 2. Properties of piezoelectric materials -- 2.1 Basic equations -- 2.2 Curie temperature -- 2.3 Phase transition -- 2.4 High dielectric constant -- 2.5 Sensitivity -- 2.6 Electromechanical Coupling Factor (k) -- 2.7 Resistivity (R) and time constant (RC) -- 2.7 Quality factors (mechanical and electrical) -- 2.8 Figure of Merit (FOM) and strain coefficient -- 2.9 Piezoelectric resonance frequency -- 2.10 Thermal expansion -- 2.11 Ageing -- 3. Characterization of piezoelectric materials -- 3.1 Measurement of piezoelectric coefficient -- 3.2 Measurement of dielectric constant -- 3.3 Measurement of Curie temperature -- 3.4 Etching and poling -- 3.5 Measurement of hysteresis (PE/SE) loops -- Conclusions -- References -- 2 -- Fabrication Approaches for Piezoelectric Materials -- 1. Introduction -- 2. Preparation techniques for piezoelectric ceramics -- 2.1 Synthesis of ceramic powders -- 2.1 Solid-state reaction -- 2.2 Co-precipitation -- 2.3 Alkoxide hydrolysis -- 2.4 The sintering method -- 2.5 Templated grain growth -- 3. Piezoelectric materials in device fabrication -- 4. Bio-piezoelectric materials -- 4.1 Types bio-piezoelectric materials -- 4.2 Synthesis strategies -- 4.2.1 Thin films -- 4.2.2 Nanoplatforms -- 5. Challenges -- 5.1 Piezoelectric ceramics -- 5.2 Bio-piezoelectric materials -- Conclusion -- References -- 3 -- Piezoelectric Materials-based Nanogenerators -- 1. Introduction -- 2. Piezoelectricity and crystallography -- 3. Maxwell's equations and piezoelectric nanogenerator -- 4. Piezoelectric materials for nanogenerators.
4.1 Ceramic -- 4.1.1 Zinc oxide -- 4.1.2 Barium titanate -- 4.1.3 Lead zirconate titanate (PZT) -- 4.2 Polymer -- 4.2.1 PVDF and its copolymer -- 4.2.2 Polylactic acid -- 4.2.3 Cellulose -- 4.3 Ferroelectret -- 4.4 PVDF based composite -- 4.4.1 Ceramic filler -- 4.4.2 Carbon-based filler -- 4.4.3 Metal based filler -- 4.4.4 Other fillers -- 5. Applications of piezoelectric nanogenerator -- 5.1 Power source of electronic devices -- 5.2 Sensing application -- 6. Challenges and future scopes -- Conclusions -- Acknowledgement -- References -- 4 -- Piezoelectric Materials based Phototronics -- 1. Introduction -- 1.1 Piezoelectric effect -- 1.2 Piezotronic effect -- 2. Piezo-phototronic effect -- 3. Piezoelectric semiconductor NWs -- 4. Effect on 2D materials -- 5. Effect on 3rd generation semiconductors -- 6. Piezo-phototronic effect on LED -- 7. Piezo-phototronic effect on solar cell -- 8. Piezo-phototronics in luminescence applications -- 9. Piezo-phototronics in other applications -- References -- 5 -- Piezoelectric Composites and their Applications -- 1. Introduction -- 2. The mechanism of piezoelectricity and principle of PZT-polymer composites -- 3. Piezoelectric materials -- 4 Applications of piezoelectric composite materials -- 4.1 Energy harvesting applications -- 4.2 Medical applications of piezoelectric materials -- 4.2.1 Piezoelectric medical devices -- 4.2.2 Piezoelectric sensors -- 4.2.3 Piezoelectric prosthetic skin -- 4.2.4 Cochlear implants -- 4.2.5 Piezoelectric surgery -- 4.2.6 Ultrasonic dental scaling -- 4.2.7 Microdosing -- 4.2.8 Energy harvesting -- 4.2.9 Catheter applications -- 4.2.10 Neural stimulators -- 4.2.11 Healthcare monitoring -- 5. Structural health monitoring and repair -- Conclusion -- References -- 6 -- Piezoelectric Materials for Biomedical and Energy Harvesting Applications -- 1. Introduction.
1.1 Types of advance piezoelectric functional materials -- 1.1.1 Polymer piezocomposite -- 1.1.2 Ceramics piezocomposite -- 1.1.3 Polymer ceramics piezocomposite -- 2. Applications -- 2.1 Microelectromechanical system (MEMS) devices -- 2.2 MEMS generators for energy harvesting -- 2.3 MEMS sensor -- 2.3.1 Pressure sensor -- 2.3.2 Healthcare sensor -- 2.3.3 Cell and tisusse regenration -- Conclusion -- Reference -- 7 -- Piezoelectric Thin Films and their Applications -- 1. Piezoelectric thin films -- 2. Lead free piezoelectric thin films -- 2.1 AlN thin films -- 2.2 ZnO thin films -- 2.2.1 Synthesis of ZnO thin films -- 2.3 KNN thin films -- 2.3.1 Synthesis of KNN thin films -- 3. Characterization techniques for piezoelectric thin film -- 3.1 Resonance spectrum method -- 3.2 Pneumatic loading method and normal loading method -- 3.3 Characterizations using capacitance measurements -- 4. Applications -- 4.1 Energy harvesting -- 4.2 Actuators -- 4.3 Electronics -- 4.4 Acoustic biosensors -- 4.5 Surface acoustic wave (SAW) biosensors -- 5. Recent developments in piezoelectric thin film devices -- Conclusion -- References -- 8 -- 1. Perovskites -- 2. Lead free perovskites -- 3. Processing of lead-free perovskites -- 4. Piezoelectricity in lead free perovskite -- 4.1 Fundamentals of piezoelectricity -- 5. Different lead-free piezoceramics and their applications -- 5.1 KNN based ceramics -- 5.2 Bismuth sodium titanate based piezoceramics and their applications -- 5.3 BaTiO3 (BT) based piezo-ceramics -- 5.3.1 BaTiO3 ceramics phase boundary -- 5.3.2 Factors in phase boundaries -- 5.3.3 Sintering and curie temperature -- 5.4 Bismuth based piezoceramics -- 5.4.1 Phase boundary in BFO-based ceramics -- 5.4.1.1 Ion substitution -- 5.4.1.2 Addition of ABO3 -- 5.4.2 Temperature stability of strain properties.
5.4.3 Relationship between piezoelectricity and phase boundaries -- 6. Requirements for piezoceramic applications -- 6.1 Actuators -- 6.2 Sensors -- 6.3 Transducers -- 6.3.1 Piezoelectric transducers -- 6.4 Resonators -- Conclusion -- References -- 9 -- Piezoelectric Materials for Sensor Applications -- 1. Introduction -- 2. Piezoelectric mechanism -- 3. Types of piezoelectric materials -- 4. Fabrication methods -- 5. Applications of piezoelectric materials -- 5.1 Applications in wearable and implanted biomedical devices -- 5.2 Piezoelectric materials for energy applications -- 5.3 Piezoelectric materials in tissue engineering -- 5.4 Piezoelectric materials in other applications -- Conclusion and outlook -- References -- back-matter -- Keyword Index -- About the Editors.
Record Nr. UNINA-9911009183203321
Inamuddin  
Millersville : , : Materials Research Forum LLC, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hydrogen Energy Production and Fuel Generation
Hydrogen Energy Production and Fuel Generation
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (648 pages)
Altri autori (Persone) AltalhiTariq
LuqmanMohammad
CruzJorddy Neves
ISBN 1-394-24854-7
1-394-24853-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911028671803321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanoionics : Fundamentals and Applications
Nanoionics : Fundamentals and Applications
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (363 pages)
Disciplina 541.372
Altri autori (Persone) AltalhiTariq
LuqmanMohammad
CruzJorddy Neves
ISBN 1-394-31394-2
1-394-31393-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Nanoionics for Energy Storage and Conversion: Materials and Technologies -- 1.1 Introduction -- 1.2 Nanoionics for Energy Storage -- 1.2.1 Nanoionics for Batteries -- 1.2.2 Nanoionics for Supercapacitors -- 1.2.3 Nanoionics for Fuel Cell -- 1.3 Nanostructured Materials of Transport Behavior -- 1.3.1 Accumulating of Space Charges -- 1.3.2 Space Charges Depletion -- 1.4 Nanomaterials for Energy Storage Applications -- 1.4.1 Nanoionics Application and Technologies in Fuel Cells -- 1.4.2 Nanoionics Application and Technologies in Lithium Batteries -- 1.4.2.1 Nanocrystalline Electrodes -- 1.4.2.2 Shape of the Curve and Cell Voltage -- 1.4.2.3 Low Potential Extra Storage of Lithium -- 1.4.2.4 Interfacial Lithium Storage: Phenomenological Model -- 1.4.3 Nanoionics Application and Technologies in Supercapacitors -- 1.4.3.1 Novel Nanoionic Phenomena, Effects, and Physicochemical Nano Systems -- 1.4.3.2 Ionic Conductors Classification: Innovative Superionic Conductors -- 1.4.3.3 AdSIC/EC Heterojunctions for Ion-Electron Mechanisms -- 1.4.3.4 Creation of Nanoionic Supercapacitors: Models and Methods -- 1.4.3.5 AdSIC-Based Devices -- 1.4.3.6 Deep-Sub-Voltage Nanoelectronics as Impulse Storage Capacitors in -- 1.4.3.7 Micron Size Supercapacitors Based Advanced Superionic Conductors -- 1.4.4 Nanoionics Application and Technologies in Novel Memory Devices -- 1.4.4.1 Resistive-Switching Memories of Nanoionics -- 1.4.4.2 Memristors for Non-Volatile Memories (NVM) -- 1.4.4.3 Memristors for Artificial Synapses -- 1.4.4.4 Recognition of LTP and STP in Oxide Memristors -- 1.4.4.5 Realization of STDP in Oxide Memristors -- 1.5 Prospects and Outlook: Why Nanoionics? -- 1.5.1 Future of Nanoionic Devices -- 1.6 Conclusions -- References.
Chapter 2 Fundamentals of Nanoionics and their Applications -- 2.1 Introduction -- 2.2 Applications -- 2.2.1 Employment of Interface - Dominant Materials (IDMs) in Novel Solid State Power Devices -- 2.2.1.1 Micro Solid Oxide Fuel Cells (µSOFC) -- 2.2.1.2 Ion Gated Thermoelectrics -- 2.2.1.3 Solid Oxide Photoelectrochemical Cells (SOPECs) -- 2.2.2 Nanoarchitectonics for Atom-Based Devices -- 2.2.3 Biological Nanoionics -- 2.2.4 Artificial Nanoionics -- 2.2.4.1 Liquid Nanoionics -- 2.2.5 Utilization of Nanochannels for Electrochemical Energy Storage -- 2.2.5.1 Lithium-Ion Batteries (LIB) -- 2.2.5.2 Lithium Sulfur Batteries -- 2.2.5.3 Lithium Organic Batteries (LOB) -- 2.2.6 Nanocrystalline Structures -- 2.2.6.1 Sol-Gel (Chemical Deposition Method) -- 2.2.6.2 Microstructure Investigation -- 2.2.6.3 Storage of Hydrogen -- 2.3 Future Perspective -- 2.4 Conclusion -- References -- Chapter 3 Nanomaterials for Nanoionics Applications: Synthesis, Characterization and Device Integration -- 3.1 Introduction -- 3.2 Synthesis of Nanomaterials -- 3.2.1 Chemical Route of Synthesis of Nanomaterials -- 3.2.2 Physical Route of Synthesis of Nanomaterials -- 3.2.3 Biological Route of Synthesis of Nanomaterials -- 3.3 Characterization of Nanomaterials -- 3.3.1 Surface Morphology, Surface Area, Size and Shape of Nanoparticles -- 3.3.2 Analysis of Elemental and Mineral Composition -- 3.3.3 Structures and Bonds in Nanoparticles -- 3.3.4 Magnetic Properties of Nanoparticles -- 3.4 Device Integration of Nanoionics -- 3.4.1 Resistive Switching Memories -- 3.4.2 Lithium Batteries -- 3.5 Summary and Future Prospects -- References -- Chapter 4 Nano-Porous Silica in Devices and Ion-Based Systems - Unveiling the Design, Fabrication, and Diverse Applications -- 4.1 Introduction -- 4.2 Methods Used for Synthesis of Nanoporous Silica.
4.3 Applications of Nanoporous Silica in Various Fields -- 4.3.1 Biomedical -- 4.3.2 Water Decontamination -- 4.3.3 Energy -- 4.4 Conclusion -- Acknowledgement -- References -- Chapter 5 Bioinspired Nanoionics for Biomedical and Bioelectronic Applications -- 5.1 Introduction -- 5.2 Biomimetic Ion Transport Systems -- 5.2.1 Ion Channels -- 5.2.2 Ion Pumps -- 5.2.3 Ion Exchangers -- 5.2.4 Biomimetic Ion Transport Systems in Drug Delivery -- 5.2.5 Biomedical Applications -- 5.2.5.1 Drug Delivery -- 5.2.5.2 Bioimaging -- 5.2.5.3 Tissue Engineering -- 5.2.6 Bioelectronic Applications -- 5.2.6.1 Ion-Selective Sensors -- 5.2.6.2 Neuroprosthetics -- 5.2.6.3 Energy Storage -- 5.3 Biomimetic Materials in Bioinspired Nanoionics -- 5.3.1 Bioresponsive Polymers -- 5.3.2 Bioinspired Nanocomposites -- 5.3.3 Nanoparticle-Based Ion Carriers -- 5.4 Biomedical Breakthroughs -- 5.4.1 Organelle-Targeted Drug Delivery -- 5.4.2 Theranostics: Simultaneous Therapy and Imaging -- 5.4.3 Artificial Biomimetic Organs -- 5.5 Bioelectronic Innovations -- 5.5.1 Bioelectronic Skin -- 5.5.2 Ionic Circuitry -- 5.5.3 Bioelectronic Therapeutics -- 5.6 Biocompatibility and Safety -- 5.7 Ethical and Regulatory Consideration -- 5.8 Conclusion -- References -- Chapter 6 Nanoionics in Biomedical Applications: Diagnostic and Therapeutic Approaches -- 6.1 Introduction to Nanoionics -- 6.2 Types of Nanoionics -- 6.2.1 Biological Nanoionics -- 6.2.2 Artificial Nanoionics -- 6.2.3 Biological-Artificial Hybrid Nanoionics -- 6.3 General Applications of Nanoionics -- 6.4 Applications of Nanoionics in Diagnosis -- 6.5 Applications of Nanoionics in Therapeutics -- 6.5.1 Nanoionics in Cancer Therapy -- 6.5.2 Nanoionics as Antibiotics -- 6.6 Conclusions -- References -- Chapter 7 Nanoionics in Electronics and Optoelectronics: Advances and Applications -- 7.1 Introduction.
7.2 Development of Nanoionic Materials -- 7.2.1 Electronics -- 7.2.2 Optoelectronics -- 7.3 Application of Nanoionics in Electronics -- 7.3.1 Resistive Switching -- 7.3.2 Memristive Devices -- 7.3.2.1 Redox Reactions Initiated by the Migration of Cations -- 7.3.2.2 Redox Reactions Initiated by the Migration of Anions -- 7.3.3 Transistor -- 7.4 Application of Nanoionics in Optoelectronics -- 7.4.1 Light Emitting Diode -- 7.4.2 Solar Cell -- 7.4.3 Photo Assisted Switch -- 7.4.4 High-Performance Optical Sensors -- 7.5 Future Perspectives and Challenges -- 7.6 Conclusions -- References -- Chapter 8 Challenges and Opportunities in Nanoionics: Towards Breakthrough Applications -- 8.1 Introduction -- 8.2 Mechanism Behind Nanoionics -- 8.3 Significance of Nanomaterials in Nanoionics -- 8.3.1 Metal Oxide Nanomaterials -- 8.3.2 Ceramic Nanomaterials -- 8.3.3 Polymeric Nanomaterials -- 8.3.4 Carbon-Based Nanomaterials -- 8.3.5 Two-Dimensional (2D) Materials -- 8.3.6 Hybrid Nanostructures -- 8.3.7 Nanocomposites -- 8.4 Energy Storage Applications -- 8.5 Emerging Electronics -- 8.5.1 Memory Devices -- 8.5.2 Sensors -- 8.5.3 Energy Harvesting Devices -- 8.6 Challenges in Nanoionics Technology -- 8.7 Sustainability and Ethical Considerations in Nanoionics -- 8.8 Cross-Disciplinary Opportunities -- 8.9 Educational Outreach and Knowledge Transfer -- 8.10 Significance of Nanoionics in Industrial Revolution -- 8.11 Innovation and Future Prospects -- Conclusion -- References -- Chapter 9 Nanoscale Modeling and Simulation in Nanoionics: Insights into Material Behavior and Device Design -- 9.1 Introduction -- 9.2 Modeling and Simulation Methods in Nanoionics -- 9.2.1 Molecular Dynamic Simulations (MD) -- 9.2.2 Charge Transport Model (CTM) for Nanoionic Memristors -- 9.2.3 Linear Drift Memristor Model -- 9.2.4 SPICE Model for Memristors.
9.2.5 Structure-Dynamic Approach (SDA) -- 9.2.6 Finite Element Method (FEM) Model -- 9.3 Nanoionic Memristors -- 9.3.1 Types of Memristors -- 9.4 Resistor-Switching Devices Design -- 9.4.1 A Cation-Based Resistive-Switching Effect -- 9.4.2 B Anion-Based Resistive-Switching Effect -- 9.4.3 Cation and Anion-Based Resistive-Switching Effect -- 9.5 Quantum-Point Contacts -- 9.6 Magnetic Nanostructures -- 9.7 Selector Devices -- 9.8 Future Perspective -- References -- Chapter 10 Commercialization and Industrial Aspects of Nanoionics: Lab to Market -- 10.1 Introduction -- 10.1.1 Importance in Emerging Technologies -- 10.1.1.1 Advancements in Energy Storage Applications -- 10.1.1.2 Next-Generation Electronics -- 10.1.1.3 Transformation in Sensor Technologies -- 10.2 Commercialization Challenges -- 10.2.1 Navigating Health and Environmental Concerns -- 10.2.2 Ensuring Safety in Nanoionic Applications -- 10.2.3 The Role of Public Awareness and Acceptance -- 10.2.4 Mitigating Risks Associated with Nanoproduct Exposure -- 10.3 Nano-Ionic Memory: Implications for the Economy -- 10.4 Future Prospects -- 10.5 Conclusion -- References -- Chapter 11 Ion Migration and Defects in Nanostructures: Implications for Device Performance and Reliability -- 11.1 Introduction -- 11.2 Ion Migration in Nanoionics -- 11.2.1 Types of Migration -- 11.2.1.1 Cation Migration -- 11.2.1.2 Anion Migration -- 11.3 Effect of Local Ion Migration on Device Performance -- 11.3.1 Modified Electrical Properties -- 11.3.2 Material Degradation -- 11.3.3 Memory Devices and Resistive Switching -- 11.3.4 Battery Performance -- 11.3.5 Corrosion and Chemical Reactions -- 11.3.6 Effect of Neighbourhood Ion Migration on Tool Overall Performance -- 11.4 Limitations of Ion Migration -- 11.5 Defects in Nanoionics -- 11.5.1 Point Defect Chemistry -- 11.5.2 Size Defects.
11.5.3 Bulk Defects and Interfacial Thermodynamics.
Record Nr. UNINA-9911022470503321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recent Advances in Plasticizers / / edited by Mohammad Luqman
Recent Advances in Plasticizers / / edited by Mohammad Luqman
Pubbl/distr/stampa Rijeka, Croatia : , : IntechOpen, , 2012
Descrizione fisica 1 online resource (x, 226 pages) : illustrations
Disciplina 668.4
Soggetto topico Plasticizers
ISBN 953-51-4321-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910317617103321
Rijeka, Croatia : , : IntechOpen, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sewage and Biomass from Wastewater to Energy : Possibilities and Technology
Sewage and Biomass from Wastewater to Energy : Possibilities and Technology
Autore Altalhi Tariq
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (440 pages)
Disciplina 662.88
Altri autori (Persone) LuqmanMohammad
BwapwaJoseph K
Soggetto topico Sewage sludge fuel
Biomass energy
ISBN 9781394204502
1394204507
9781394204496
1394204493
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Chapter 1 Thermal/Photocatalytic Conversion of Sewage Sludge and Biomass to Energy -- 1.1 Introduction -- 1.2 Biomass as Energy Sources -- 1.3 Biomass Types and Energy Content -- 1.4 Conversion of Biomass to Energy -- 1.4.1 Thermal Conversion of Biomass to Energy -- 1.4.1.1 Combustion/Incineration -- 1.4.1.2 Hydrothermal Carbonization -- 1.4.1.3 Biomass Pyrolysis -- 1.4.1.4 Noncatalytic Pyrolysis -- 1.4.1.5 Slow Pyrolysis (Carbonization/Torrefaction) -- 1.4.1.6 Rapid/Fast Pyrolysis -- 1.4.1.7 Co-Pyrolysis -- 1.4.1.8 Gasification -- 1.5 Biochemical Conversion -- 1.5.1 Photocatalytic Conversion of Biomass -- 1.5.2 Photocatalytic Hydrogen Production -- 1.5.2.1 Photocatalytic Materials -- 1.6 Conclusion and Future Prospects -- References -- Chapter 2 Sewage Sludge Conversion to Sustainable Energy: Biogas, Methane, Hydrogen, and Biofuels -- 2.1 Introduction -- 2.2 Wastewater: Origins, Characteristics, Types, and Problems -- 2.3 World Situation in Wastewater and Energy -- 2.4 Composition of Wastewater
Record Nr. UNINA-9911020095903321
Altalhi Tariq  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Solar Energy Concentrators : Essentials and Applications
Solar Energy Concentrators : Essentials and Applications
Autore Altalhi Tariq
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (324 pages)
Disciplina 621.472
Altri autori (Persone) LuqmanMohammad
Soggetto topico Solar concentrators
Solar energy
ISBN 9781394204533
1394204531
9781394204526
1394204523
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Basics of Solar Energy Concentrators -- 1.1 Introduction -- 1.2 Solar Tracking Systems (STS) -- 1.2.1 Types of Solar Trackers Based on Techniques -- 1.2.2 Passive Solar Tracker -- 1.2.3 Active Solar Tracker Active -- 1.2.3.1 The Single Axis of the Solar Tracker -- 1.2.3.2 Dual-Axis System Solar Tracker -- 1.2.4 Chronological Solar Tracker -- 1.3 Azimuth-Elevation Sun-Tracker -- 1.3.1 Steps of Evaluation of the Azimuth Angle -- 1.3.2 Sun-Tracking Angles -- 1.3.3 Coordinate Transformation -- 1.3.4 The Incident Sunray and Ray/Plane Algorithm -- 1.3.5 Levelized Cost of Electricity (LCOE) -- 1.3.6 Layout Configuration -- 1.3.7 Annual Energy Generation -- 1.4 Solar Radiation Models (SR Model) -- 1.4.1 Global, Direct, Diffuse Model SR -- 1.4.1.1 Ground-Albedo -- 1.4.2 Isotropic Models -- 1.4.3 Anisotropic Models -- 1.4.4 Liu and Jordan Model (LJ) -- 1.4.5 Koronakis Model (K.O.) -- 1.4.6 Hay and Davies Model (HD) -- 1.4.7 Hay and Davies, Klucher, and Reindl Models (HDKR) -- 1.5 The Axis of Symmetry by the Concentrator's Focus on the Radiation Receiver -- 1.5.1 Relationship Between Coordinates of Ray Incidence Points on the Reflecting Surface and the Radiation Receiver -- 1.5.2 For the Upper Semi-Half, the Distribution Ratio of Concentration -- 1.5.3 For the Lower Semi-Half, the Distribution Ratio of the Concentrator -- 1.5.4 Optical Efficiency (çdis) -- 1.5.5 Analysis of Concentrator Design -- 1.6 Computing the Efficiency of Electricity and Heat by Using Different Models -- 1.6.1 Planar Solar Energy Systems -- 1.6.2 Biaxial Models -- 1.6.2.1 Drawback of the Model -- 1.6.3 Annual Direct Irradiation -- 1.7 Conclusion and Outlook -- References -- Chapter 2 Solar Energy Concentrator-Based Theories -- 2.1 Introduction -- 2.1.1 Photovoltaic Energy Conversion.
2.1.2 Solar Energy Concentrator (SEC) -- 2.2 Solar Energy Concentrator-Based Theory -- Conclusion -- Acknowledgement -- References -- Chapter 3 Principles of Solar Energy Concentrators -- 3.1 Solar Energy Concentrator -- 3.1.1 Solar Energy Across the Entire Electromagnetic Spectrum -- 3.2 Components of Solar Concentrators -- 3.2.1 Primary Concentrators -- 3.2.2 Secondary Concentrators -- 3.2.3 Receiving Energy Collectors -- 3.3 Properties of Solar Concentrator Material -- 3.4 Working Principle of Solar Energy Concentrators -- 3.5 Types of Solar Energy Concentrators -- 3.5.1 Parabolic Concentrators -- 3.5.1.1 Parabolic Trough Concentrators -- 3.5.1.2 Parabolic Dish Concentrators -- 3.5.2 Hyperboloid Solar Concentrators -- 3.5.3 Fresnel Lens Concentrators -- 3.5.3.1 Fresnel Lens Imaging Solar Concentrators -- 3.5.3.2 Non-Imaging Solar Concentrators with Fresnel Lenses -- 3.5.4 Compound Parabolic Concentrators (CPCs) -- 3.5.5 Dielectric Totally Internally Reflecting Concentrators (DTIRCs) -- 3.5.6 Flat High-Concentrated Devices -- 3.5.7 Quantum Dot Concentrators (QDCs) -- 3.6 Absorption Coefficients for Selected Carrier Materials -- 3.7 Thermodynamic Limits -- 3.8 Properties of Quantum Dots -- 3.9 Optical Limits of Quantum Dot Concentrators (QDCs) -- 3.9.1 Optical Absorption and Transmission -- 3.9.2 Electrical Power Measurement -- 3.10 Optical Limits of LSCs (Luminescent Solar Concentrators) -- Conclusion -- References -- Chapter 4 Limitations of Solar Concentrators -- 4.1 Solar Concentrator -- 4.2 Luminescent Solar Concentrators -- 4.2.1 Operation of LCs -- 4.3 Ideal Concentrator -- 4.4 Limitation Factors -- 4.5 Photovoltaic Efficiency -- 4.5.1 Construction and Operations -- 4.5.2 Efficiency -- 4.6 Band Gap -- 4.7 Reabsorption Loss -- 4.8 Temperature -- 4.9 Thermal Properties -- 4.10 Concentration Ratio -- 4.11 Acceptance Angle -- 4.12 Economic Aspect.
4.13 Scaling of Solar Concentrators -- 4.14 Future Perspectives -- 4.15 Conclusion -- References -- Chapter 5 An Array of Aspects in the Feasibility of Different Concentrated Solar Power Technologies -- 5.1 Introduction -- 5.2 AHP Technique -- 5.3 Results and Discussion -- 5.4 Conclusions -- References -- Chapter 6 Solar Energy Concentrator Research: Past and Present -- 6.1 Introduction -- 6.2 History -- 6.3 Types of Solar Energy Concentrators -- 6.3.1 Parabolic Trough Concentrators -- 6.3.2 Dish Concentrators -- 6.3.3 Heliostat Solar Concentrators and Central Receiver -- 6.3.4 Fresnel Lens Concentrators -- 6.4 Conclusion -- References -- Chapter 7 Various Storage Possibilities for Concentrated Solar Power -- 7.1 Introduction -- 7.2 Fundamentals of Solar Power Concentration -- 7.3 Types of CSP Technologies -- 7.4 Energy Storage Techniques for CSP Systems -- 7.4.1 How Thermal Energy Storage Functions in CSP -- 7.4.2 Sensible Storage Materials -- 7.4.2.1 Liquid Medium -- 7.4.2.2 Solid Medium -- 7.4.2.3 Gaseous Medium -- 7.4.2.4 Nanofluids -- 7.4.3 Phase Change Materials (PCM) -- 7.4.4 Thermochemical -- 7.4.5 Thermal Battery Energy Storage -- 7.4.6 Hydrogen Energy Storage -- 7.4.7 Compressed Air and Pumped Hydro Energy Storage -- 7.4.7.1 Compressed Air Storage -- 7.4.7.2 Pumped Hydro Energy Storage -- 7.5 Summary -- References -- Chapter 8 Uranyl-Doped PMMA-Based Solar Concentrator -- 8.1 Introduction -- 8.2 Luminescent Solar Cell Concentrators -- 8.3 Kind of Polymer Used in LSCs -- 8.4 Choice of Fluorescent Material -- 8.4.1 Historical Tie-Up of Luminescent Solar Concentrators with Organic Molecules -- 8.5 Photosensitization of Uranium Salt -- 8.6 Effect of Concentration -- 8.7 Effect of Change in pH -- 8.8 Losses in Uranyl-Doped LSC -- 8.8.1 Advantage of Uranyl Doping Compared to Organic Material -- 8.9 Co-Doping of Uranyl-Based LSCs.
8.10 Competitive Rare Earth Metals Used in LSCs -- 8.10.1 Neodymium (Nd3+)-Doped Glasses -- 8.10.2 Neodymium (Nd3+) Co-Doped with Yb3+ -- 8.10.3 Co-Doping of Transition Metal Along with Neodymium (III)- and Ytterbium (III)-Doped Glasses -- 8.10.4 Rare Earth Metal Attached to Organic Ligands -- 8.10.4.1 [Eu(tfn)3(DPEPO)] -- 8.10.4.2 Eu3+-Pyridine-Based Complexes -- 8.10.5 Nb3+ and Yb3+ Incorporated in YAG or GGG -- 8.11 Alternative Applications of ISCs -- 8.11.1 Switchable "Smart" Window -- 8.11.2 Day Lighting -- 8.12 Conclusion -- Acknowledgement -- References -- Chapter 9 Deployment of Solar Energy Concentrators Across the Globe -- 9.1 Introduction -- 9.2 Solar Energy Concentrators -- 9.2.1 Benefits of Using Solar Energy Concentrators -- 9.2.2 Applications of Solar Energy Concentrators -- 9.3 Classification Based on Point or Line Concentration of Sunlight -- 9.3.1 Point Solar Concentrators -- 9.3.1.1 Heliostat Field Collectors (HFCs) -- 9.3.1.2 Parabolic Dish Collectors (PDCs) -- 9.3.2 Line Solar Concentrators -- 9.3.2.1 Linear Fresnel Solar Reflectors (LFRs) -- 9.3.2.2 Parabolic Trough Collectors (PTCs) -- 9.4 Classification Based on Optical Principle -- 9.4.1 Reflector -- 9.4.2 Refractor -- 9.4.3 Hybrid -- 9.4.4 Luminescent -- 9.5 Deployment of Solar Energy Concentrators -- 9.6 SWOT Analysis of Deployment of Solar Energy Concentrators -- 9.6.1 Strengths -- 9.6.2 Weaknesses -- 9.6.3 Opportunities -- 9.6.4 Threats -- 9.6.5 Economics of Solar Energy Concentrators -- 9.6.6 Policies and Regulations -- 9.6.7 Market Outlook of Solar Concentrators -- 9.6.8 Competitive Environment for Solar Concentrators -- 9.6.9 Market Segmentation Research for Solar Concentrators -- 9.6.9.1 Solar Power Towers -- 9.6.9.2 Based on End-User -- 9.7 Based on Application -- 9.8 Conclusion Solar Power Towers -- References.
Chapter 10 Molten Salt Thermal Storage Systems for Solar Energy Concentrators -- 10.1 Introduction -- 10.2 Molten Salt as a Thermal Storage System -- 10.3 Working Operation of Molten Salt Storage Systems -- 10.4 Strategies for Concentrating Solar Power -- 10.4.1 Stationary Solar Collectors -- 10.4.2 Sun-Tracking Solar Collectors -- 10.5 CSE Technology and Molten Salt Solar Power Storage Impediments -- 10.6 Applications of CSE and Recent Development in Molten Salt -- 10.7 Conclusion -- References -- Chapter 11 Production of Synthetic Fuels Using Concentrated Solar Thermal Energy -- 11.1 Introduction -- 11.2 What is Synthetic Fuel? -- 11.3 What is Concentrated Solar Thermal Energy? -- 11.4 Solar Hydrogen Production -- 11.4.1 Approaches to Solar Hydrogen Production -- 11.4.1.1 Photocatalytic Water Splitting (PC Water Splitting) -- 11.4.1.2 Photo-Electrochemical -- 11.4.1.3 Photovoltaic-Electrochemical (PV-EC) Water Splitting -- 11.4.1.4 Solar Thermo Chemical (STC) Water Splitting -- 11.4.1.5 Photothermal Catalytic H2 Synthesis (from Fossil Fuels) -- 11.4.1.6 Photobiological (PB) H2 Production -- 11.5 Hydrogen Production by S-I Thermo-Chemical Cycle Using Solar Thermal Energy -- 11.5.1 Chemical Reactions Involved in S-I Cycle -- 11.5.2 Advantages and Disadvantages of the S-I Cycle -- 11.6 Thermodynamic Analysis of Direct Water Decomposition -- 11.7 Recent Advances for H2 Production -- 11.7.1 From Overall Photocatalytic Water Splitting Hydrogen Production -- 11.7.2 H2 Production from PEC Water Splitting -- 11.7.3 H2 Production from PV-EC Overall Water Splitting -- 11.7.4 Hydrogen (H2) Production by STC Water Splitting -- 11.7.5 Development of New STC Cycles -- 11.7.6 Solar Thermal Technology at Higher Temperature -- 11.7.7 Nanomaterials -- 11.7.8 Advanced Reactor Design.
11.8 Methanol Production Principle by H2 Produced with Concentrated Solar Thermal Energy.
Record Nr. UNINA-9911020095203321
Altalhi Tariq  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Water Splitting
Water Splitting
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (333 pages)
Altri autori (Persone) AltalhiTariq
LuqmanMohammad
CruzJorddy Neves
ISBN 1-394-24765-6
1-394-24763-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911020194803321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wind Energy Storage and Conversion : From Basics to Utilities
Wind Energy Storage and Conversion : From Basics to Utilities
Autore Altalhi Tariq
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (272 pages)
Disciplina 621.312136
Altri autori (Persone) LuqmanMohammad
Soggetto topico Wind power
Energy storage
ISBN 9781394204564
1394204566
9781394204557
1394204558
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Wind Energy: From Past to Present Technology -- 1.1 Introduction -- 1.2 Historical Background -- 1.3 Use of Wind Energy in Specific Countries -- 1.4 Wind Technology -- 1.4.1 Wind Energy Conversion System (WECS) -- 1.4.2 Electric Generator -- 1.4.3 Evolution of Power Electronics -- 1.4.4 Energy Storage Technology -- 1.5 Horizontal-Axis Wind Turbines (HAWTs) -- 1.5.1 History -- 1.5.2 Design -- 1.5.3 Components -- 1.5.4 Working Principle -- 1.5.5 Applications -- 1.6 Vertical Axis Wind Turbine (VAWT) -- 1.6.1 Working Principle -- 1.7 Current Technologies in Wind Power Generation -- 1.7.1 Buoyant Airborne Turbine (BAT) -- 1.7.2 Offshore Floating Wind Technology -- 1.8 Advantages -- 1.9 Disadvantages of Wind Energy -- 1.10 Conclusion -- References -- Chapter 2 Environmental Consequences of Wind Energy Technologies -- 2.1 Introduction -- 2.2 Impact of Wind Energy on the Environment -- 2.3 Key Environmental White Paper Issues Related to Wind Power -- 2.4 Individual Effects on Population Impacts -- 2.5 Comprehending the Overall Effects of Wind Power on Wildlife -- 2.6 Considerations for the Environment when Making Choices -- 2.7 Wind Power and Risk Management -- 2.8 Concerns About Using Wind Energy -- 2.9 Conclusion -- References -- Chapter 3 Important Issues and Future Opportunities for Huge Wind Turbines -- 3.1 Introduction -- 3.1.1 Visual Impact -- 3.1.2 Noise -- 3.1.3 Wildlife -- 3.1.4 Intermittent Energy Generation -- 3.2 Worldwide Wind Energy Forecast -- 3.2.1 Canada -- 3.2.2 Russia -- 3.2.3 India -- 3.2.4 United States of America -- 3.2.5 China -- 3.2.6 Germany -- 3.3 Increased Wind Penetrating Techniques -- 3.3.1 Energy Storage Systems -- 3.3.2 Advanced Forecasting Tools -- 3.3.3 Bucket Foundation.
3.3.4 Advantages of Bucket Foundation -- 3.3.5 Limitations of Bucket Foundation -- 3.3.6 Monopile Foundation -- 3.3.7 Jacket Foundation -- 3.3.8 Floating Foundation -- 3.3.9 Tripod Foundation -- 3.4 India's Perspective for Wind Energy -- 3.4.1 Intermittency and Variability -- 3.4.2 Land Acquisition -- 3.4.3 Transmission Constraints -- 3.4.4 Limited Wind Resource Data -- 3.4.5 Financing Constraints -- 3.4.6 Environmental and Social Impacts -- 3.4.7 Policy and Regulatory Uncertainty -- 3.5 Progress of Technology -- 3.5.1 Larger and More Efficient Turbines -- 3.5.2 Advancements in Turbine Design -- 3.5.3 Improvements in Manufacturing and Installation -- 3.6 Conclusion -- References -- Chapter 4 Wind Hybrid Power Technologies -- 4.1 Introduction -- 4.2 Types of Hybrid Power Systems -- 4.3 Wind Hybrid Power Technologies -- 4.3.1 Wind Diesel Hybrid Power Technology -- 4.3.2 Wind Solar Hybrid Power Technology (WSHPT) -- 4.3.3 Wind Hydrogen Hybrid Power Technology (WHHPT) -- 4.3.4 Wind-Hydro Hybrid Power Technology (WHHPT) -- 4.3.5 Wind-Photovoltaic (PV) Hybrid Power Technology -- 4.4 Summary -- References -- Chapter 5 Theories Based on Technological Advances for Wind Energy -- 5.1 Introduction -- 5.2 Theoretical Background -- 5.2.1 Basic Principles of Wind Energy Conversion -- 5.2.2 Aerodynamics of Wind Turbines -- 5.2.3 Control Systems for Wind Turbines -- 5.3 Theories Based on Technological Advances -- 5.3.1 Wind Turbine Design Theory -- 5.3.1.1 Rotor Blade Design Theory -- 5.3.1.2 Aerodynamic Design Theory -- 5.3.2 Power Control Theory -- 5.3.2.1 Maximum Power Point Tracking Theory -- 5.3.2.2 Load Control Theory -- 5.3.3 Wind Farm Layout Theory -- 5.3.3.1 Turbine Placement Theory -- 5.3.3.2 Wake Effect Theory -- 5.3.4 Grid Integration Theory -- 5.3.4.1 Power Quality Theory -- 5.3.4.2 Stability Theory.
5.4 Advancements in Wind Energy Technologies -- 5.5 Future Research Directions -- 5.6 Conclusion -- References -- Chapter 6 Wind Energy Hybrid Power Generation System with Hydrogen Storage -- 6.1 Introduction -- 6.2 Hydrogen Storage Systems -- 6.2.1 Solid-State Hydrogen Storage in Materials -- 6.3 Wind Energy Systems -- 6.4 Wind Energy Hybrid Power Generation System with Hydrogen Storage -- 6.4.1 Design and Optimization of a Wind Energy Hybrid Power Generation System with Hydrogen Storage -- 6.5 Conclusion -- References -- Chapter 7 Technologies Based on Reusable Wind Turbine Blades -- 7.1 Introduction -- 7.2 Wind Power Generation and the Importance of Wind Turbine Blades -- 7.2.1 Global Demand for Clean and Sustainable Energy -- 7.2.2 Role of Wind Turbines in Wind Power Generation -- 7.2.3 Impact of Wind Turbine Blades on Performance and Viability -- 7.3 Conventional Wind Turbine Blade Materials and Limitations -- 7.3.1 Overview of Conventional Blade Materials -- 7.3.2 Limitations in Terms of Recyclability and Environmental Impact -- 7.4 Advancements in Materials Engineering for Reusable Wind Turbine Blades -- 7.4.1 Composite Materials in Blade Design -- 7.4.2 Bio-Based Resins for Sustainable Blades -- 7.4.3 Additive Manufacturing Techniques for Blade Production -- 7.5 Challenges in Implementing Reusable Blade Technologies -- 7.5.1 Structural Integrity of Reusable Blades -- 7.5.2 Fatigue Resistance and Durability -- 7.5.3 Manufacturing Scalability and Cost-Effectiveness -- 7.6 Implications of Reusable Wind Turbine Blades -- 7.6.1 Cost Reduction and Enhanced Energy Production -- 7.6.2 Environmental Benefits and Reduction of Carbon Emissions -- 7.6.3 Policy Frameworks and Industry Collaboration -- 7.7 Testing, Modeling, and Simulation for Reliable Reusable Blade Designs -- 7.7.1 Importance of Rigorous Testing.
7.7.2 Modeling and Simulation Techniques for Design Optimization -- 7.8 Future Prospects and Research Directions -- 7.8.1 Interdisciplinary Approaches for Sustainable Innovation -- 7.8.2 Collaboration Among Researchers, Engineers, and Stakeholders -- 7.8.3 Potential Directions for Future Research -- 7.9 Conclusion -- References -- Chapter 8 Wind Turbine Assessment: A Step-by-Step Approach -- 8.1 Introduction -- 8.2 Analytic Hierarchy Strategy -- 8.3 Results and Discussion -- 8.4 Conclusions -- References -- Chapter 9 Effect of Aerodynamics on Wind Turbine Design -- 9.1 Introduction -- 9.2 Air Properties Affecting Wind Turbines -- 9.3 Classical Blade Element Momentum Theory -- 9.4 Aerodynamic Performance Testing -- 9.4.1 Wind Tunnel Testing and Field Testing -- 9.4.2 Performance Testing of a Counter-Rotating Wind Turbine System -- 9.5 Effect of Aerodynamics on Wind Turbine Design Parameters -- 9.5.1 Solidity -- 9.5.2 Number of Blades -- 9.5.3 Different Ratios -- 9.5.3.1 Chord/Radius Ratio (c/R) -- 9.5.3.2 Height-to-Radius Ratio (H/R) -- 9.5.3.3 Blade Aspect Ratio (H/c) -- 9.5.4 Pitch -- 9.5.5 Strut Connection Point -- 9.5.6 Blade Reynolds Number (Re) -- 9.5.7 Strut Effects -- 9.5.8 Strut Arrangement -- 9.6 Wind Turbine Loads -- 9.7 Conclusions -- References -- Index -- Also of Interest -- EULA.
Record Nr. UNINA-9911019519303321
Altalhi Tariq  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui