top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mathematical models of beams and cables / / Angelo Luongo, Daniele Zulli ; series editor, Noël Challamel
Mathematical models of beams and cables / / Angelo Luongo, Daniele Zulli ; series editor, Noël Challamel
Autore Luongo Angela
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : Wiley, , 2013
Descrizione fisica 1 online resource (379 p.)
Disciplina 624.1772
Altri autori (Persone) ChallamelNoël
Collana Mechanical engineering and solid mechanics series
Soggetto topico Structural analysis (Engineering) - Mathematical models
Girders
Cables
ISBN 1-118-57755-8
1-118-57763-9
1-118-57764-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title page; Contents; Preface; Introduction; List of Main Symbols; Chapter 1. A One-Dimensional Beam Metamodel; 1.1. Models and metamodel; 1.2. Internally unconstrained beams; 1.2.1. Kinematics; 1.2.2. Dynamics; 1.2.3. The hyperelastic law; 1.2.4. The Fundamental Problem; 1.3. Internally constrained beams; 1.3.1. The mixed formulation for the internally constrained beam kinematics and constraints; 1.3.2. The displacement method for the internally constrained beam; 1.4. Internally unconstrained prestressed beams; 1.4.1. The nonlinear theory; 1.4.2. The linearized theory
1.5. Internally constrained prestressed beams1.5.1. The nonlinear mixed formulation; 1.5.2. The linearized mixed formulation; 1.5.3. The nonlinear displacement formulation; 1.5.4. The linearized displacement formulation; 1.6. The variational formulation; 1.6.1. The total potential energy principle; 1.6.2. Unconstrained beams; 1.6.3. Constrained beams; 1.6.4. Unconstrained prestressed beams; 1.6.5. Constrained prestressed beams; 1.7. Example: the linear Timoshenko beam; 1.8. Summary; Chapter 2. Straight Beams; 2.1. Kinematics; 2.1.1. The displacement and rotation fields
2.1.2. Tackling the rotation tensor2.1.3. The geometric boundary conditions; 2.1.4. The strain vector; 2.1.5. The curvature vector; 2.1.6. The strain-displacement relationships; 2.1.7. The velocity and spin fields; 2.1.8. The velocity gradients and strain-rates; 2.2. Dynamics; 2.2.1. The balance of virtual powers; 2.2.2. The inertial contributions; 2.2.3. The balance of momentum; 2.2.4. The scalar forms of the balance equations and boundary conditions; 2.2.5. The Lagrangian balance equations; 2.3. Constitutive law; 2.3.1. The hyperelastic law
2.3.2. Identification of the elastic law from a 3D-model2.3.3. Homogenization of beam-like structures; 2.3.4. Linear viscoelastic laws; 2.4. The Fundamental Problem; 2.4.1. Exact equations; 2.4.2. The linearized theory for elastic prestressed beams; 2.5. The planar beam; 2.5.1. Kinematics; 2.5.2. Dynamics; 2.5.3. The Virtual Power Principle; 2.5.4. Constitutive laws; 2.5.5. The Fundamental Problem; 2.6. Summary; Chapter 3. Curved Beams; 3.1. The reference configuration and the initial curvature; 3.2. The beam model in the 3D-space; 3.2.1. Kinematics; 3.2.2. Dynamics; 3.2.3. The elastic law
3.2.4. The Fundamental Problem3.3. The planar curved beam; 3.3.1. Kinematics; 3.3.2. Dynamics; 3.3.3. The Virtual Power Principle; 3.3.4. Constitutive law; 3.3.5. Fundamental Problem; 3.4. Summary; Chapter 4. Internally Constrained Beams; 4.1. Stiff beams and internal constraints; 4.2. The general approach; 4.3. The unshearable straight beam in 3D; 4.3.1. The mixed formulation; 4.3.2. The displacement formulation; 4.4. The unshearable straight planar beam; 4.5. The inextensible and unshearable straight beam in 3D; 4.5.1. Hybrid formulation: Version I; 4.5.2. Hybrid formulation: Version II
4.6. The inextensible and unshearable straight planar beam
Record Nr. UNINA-9910140187703321
Luongo Angela  
London, England ; ; Hoboken, New Jersey : , : Wiley, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical models of beams and cables / / Angelo Luongo, Daniele Zulli ; series editor, Noël Challamel
Mathematical models of beams and cables / / Angelo Luongo, Daniele Zulli ; series editor, Noël Challamel
Autore Luongo Angela
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : Wiley, , 2013
Descrizione fisica 1 online resource (379 p.)
Disciplina 624.1772
Altri autori (Persone) ChallamelNoël
Collana Mechanical engineering and solid mechanics series
Soggetto topico Structural analysis (Engineering) - Mathematical models
Girders
Cables
ISBN 1-118-57755-8
1-118-57763-9
1-118-57764-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title page; Contents; Preface; Introduction; List of Main Symbols; Chapter 1. A One-Dimensional Beam Metamodel; 1.1. Models and metamodel; 1.2. Internally unconstrained beams; 1.2.1. Kinematics; 1.2.2. Dynamics; 1.2.3. The hyperelastic law; 1.2.4. The Fundamental Problem; 1.3. Internally constrained beams; 1.3.1. The mixed formulation for the internally constrained beam kinematics and constraints; 1.3.2. The displacement method for the internally constrained beam; 1.4. Internally unconstrained prestressed beams; 1.4.1. The nonlinear theory; 1.4.2. The linearized theory
1.5. Internally constrained prestressed beams1.5.1. The nonlinear mixed formulation; 1.5.2. The linearized mixed formulation; 1.5.3. The nonlinear displacement formulation; 1.5.4. The linearized displacement formulation; 1.6. The variational formulation; 1.6.1. The total potential energy principle; 1.6.2. Unconstrained beams; 1.6.3. Constrained beams; 1.6.4. Unconstrained prestressed beams; 1.6.5. Constrained prestressed beams; 1.7. Example: the linear Timoshenko beam; 1.8. Summary; Chapter 2. Straight Beams; 2.1. Kinematics; 2.1.1. The displacement and rotation fields
2.1.2. Tackling the rotation tensor2.1.3. The geometric boundary conditions; 2.1.4. The strain vector; 2.1.5. The curvature vector; 2.1.6. The strain-displacement relationships; 2.1.7. The velocity and spin fields; 2.1.8. The velocity gradients and strain-rates; 2.2. Dynamics; 2.2.1. The balance of virtual powers; 2.2.2. The inertial contributions; 2.2.3. The balance of momentum; 2.2.4. The scalar forms of the balance equations and boundary conditions; 2.2.5. The Lagrangian balance equations; 2.3. Constitutive law; 2.3.1. The hyperelastic law
2.3.2. Identification of the elastic law from a 3D-model2.3.3. Homogenization of beam-like structures; 2.3.4. Linear viscoelastic laws; 2.4. The Fundamental Problem; 2.4.1. Exact equations; 2.4.2. The linearized theory for elastic prestressed beams; 2.5. The planar beam; 2.5.1. Kinematics; 2.5.2. Dynamics; 2.5.3. The Virtual Power Principle; 2.5.4. Constitutive laws; 2.5.5. The Fundamental Problem; 2.6. Summary; Chapter 3. Curved Beams; 3.1. The reference configuration and the initial curvature; 3.2. The beam model in the 3D-space; 3.2.1. Kinematics; 3.2.2. Dynamics; 3.2.3. The elastic law
3.2.4. The Fundamental Problem3.3. The planar curved beam; 3.3.1. Kinematics; 3.3.2. Dynamics; 3.3.3. The Virtual Power Principle; 3.3.4. Constitutive law; 3.3.5. Fundamental Problem; 3.4. Summary; Chapter 4. Internally Constrained Beams; 4.1. Stiff beams and internal constraints; 4.2. The general approach; 4.3. The unshearable straight beam in 3D; 4.3.1. The mixed formulation; 4.3.2. The displacement formulation; 4.4. The unshearable straight planar beam; 4.5. The inextensible and unshearable straight beam in 3D; 4.5.1. Hybrid formulation: Version I; 4.5.2. Hybrid formulation: Version II
4.6. The inextensible and unshearable straight planar beam
Record Nr. UNINA-9910807702703321
Luongo Angela  
London, England ; ; Hoboken, New Jersey : , : Wiley, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui