top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
11th Chaotic Modeling and Simulation International Conference / / edited by Christos H. Skiadas, Ihor Lubashevsky
11th Chaotic Modeling and Simulation International Conference / / edited by Christos H. Skiadas, Ihor Lubashevsky
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (314 pages)
Disciplina 003.857
003.857015118
Collana Springer Proceedings in Complexity
Soggetto topico Statistical physics
Dynamical systems
Computer simulation
Computational complexity
Technology
Game theory
Complex Systems
Simulation and Modeling
Complexity
Applied Science, multidisciplinary
Game Theory, Economics, Social and Behav. Sciences
ISBN 3-030-15297-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910337880903321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Physics of Stochastic Processes : How Randomness Acts in Time
Physics of Stochastic Processes : How Randomness Acts in Time
Autore Mahnke Reinhard
Edizione [1st ed.]
Pubbl/distr/stampa Weinheim : , : John Wiley & Sons, Incorporated, , 2009
Descrizione fisica 1 online resource (450 pages)
Disciplina 519.23
Altri autori (Persone) KaupuzsJevgenijs
LubashevskyIhor
Soggetto topico Stochastic processes
Random measures
Statistical physics
Stochastic processes -- Problems, exercises, etc
Random measures -- Problems, exercises, etc
Statistical physics -- Problems, exercises, etc
Soggetto genere / forma Electronic books.
ISBN 9783527626106
9783527408405
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Physics of Stochastic Processes -- Contents -- Preface -- Part I Basic Mathematical Description -- 1 Fundamental Concepts -- 1.1 Wiener Process, Adapted Processes and Quadratic Variation -- 1.2 The Space of Square Integrable Random Variables -- 1.3 The Ito Integral and the Ito Formula -- 1.4 The Kolmogorov Differential Equation and the Fokker-Planck Equation -- 1.5 Special Diffusion Processes -- 1.6 Exercises -- 2 Multidimensional Approach -- 2.1 Bounded Multidimensional Region -- 2.2 From Chapman-Kolmogorov Equation to Fokker-Planck Description -- 2.2.1 The Backward Fokker-Planck Equation -- 2.2.2 Boundary Singularities -- 2.2.3 The Forward Fokker-Planck Equation -- 2.2.4 Boundary Relations -- 2.3 Different Types of Boundaries -- 2.4 Equivalent Lattice Representation of Random Walks Near the Boundary -- 2.4.1 Diffusion Tensor Representations -- 2.4.2 Equivalent Lattice Random Walks -- 2.4.3 Properties of the Boundary Layer -- 2.5 Expression for Boundary Singularities -- 2.6 Derivation of Singular Boundary Scaling Properties -- 2.6.1 Moments of the Walker Distribution and the Generating Function -- 2.6.2 Master Equation for Lattice Random Walks and its General Solution -- 2.6.3 Limit of Multiple-Step Random Walks on Small Time Scales -- 2.6.4 Continuum Limit and a Boundary Model -- 2.7 Boundary Condition for the Backward Fokker-Planck Equation -- 2.8 Boundary Condition for the Forward Fokker-Planck Equation -- 2.9 Concluding Remarks -- 2.10 Exercises -- Part II Physics of Stochastic Processes -- 3 The Master Equation -- 3.1 Markovian Stochastic Processes -- 3.2 The Master Equation -- 3.3 One-Step Processes in Finite Systems -- 3.4 The First-Passage Time Problem -- 3.5 The Poisson Process in Closed and Open Systems -- 3.6 The Two-Level System -- 3.7 The Three-Level System -- 3.8 Exercises -- 4 The Fokker-Planck Equation.
4.1 General Fokker-Planck Equations -- 4.2 Bounded Drift-Diffusion in One Dimension -- 4.3 The Escape Problem and its Solution -- 4.4 Derivation of the Fokker-Planck Equation -- 4.5 Fokker-Planck Dynamics in Finite State Space -- 4.6 Fokker-Planck Dynamics with Coordinate-Dependent Diffusion Coefficient -- 4.7 Alternative Method of Solving the Fokker-Planck Equation -- 4.8 Exercises -- 5 The Langevin Equation -- 5.1 A System of Many Brownian Particles -- 5.2 A Traditional View of the Langevin Equation -- 5.3 Additive White Noise -- 5.4 Spectral Analysis -- 5.5 Brownian Motion in Three-Dimensional Velocity Space -- 5.6 Stochastic Differential Equations -- 5.7 The Standard Wiener Process -- 5.8 Arithmetic Brownian Motion -- 5.9 Geometric Brownian Motion -- 5.10 Exercises -- Part III Applications -- 6 One-Dimensional Diffusion -- 6.1 Random Walk on a Line and Diffusion: Main Results -- 6.2 A Drunken Sailor as Random Walker -- 6.3 Diffusion with Natural Boundaries -- 6.4 Diffusion in a Finite Interval with Mixed Boundaries -- 6.5 The Mirror Method and Time Lag -- 6.6 Maximum Value Distribution -- 6.7 Summary of Results for Diffusion in a Finite Interval -- 6.7.1 Reflected Diffusion -- 6.7.2 Diffusion in a Semi-Open System -- 6.7.3 Diffusion in an Open System -- 6.8 Exercises -- 7 Bounded Drift-Diffusion Motion -- 7.1 Drift-Diffusion Equation with Natural Boundaries -- 7.2 Drift-Diffusion Problem with Absorbing and Reflecting Boundaries -- 7.3 Dimensionless Drift-Diffusion Equation -- 7.4 Solution in Terms of Orthogonal Eigenfunctions -- 7.5 First-Passage Time Probability Density -- 7.6 Cumulative Breakdown Probability -- 7.7 The Limiting Case for Large Positive Values of the Control Parameter -- 7.8 A Brief Survey of the Exact Solution -- 7.8.1 Probability Density -- 7.8.2 Outflow Probability Density.
7.8.3 First Moment of the Outflow Probability Density -- 7.8.4 Second Moment of the Outflow Probability Density -- 7.8.5 Outflow Probability -- 7.9 Relationship to the Sturm-Liouville Theory -- 7.10 Alternative Method by the Backward Fokker-Planck Equation -- 7.11 Roots of the Transcendental Equation -- 7.12 Exercises -- 8 The Ornstein-Uhlenbeck Process -- 8.1 Definitions and Properties -- 8.2 The Ornstein-Uhlenbeck Process and its Solution -- 8.3 The Ornstein-Uhlenbeck Process with Linear Potential -- 8.4 The Exponential Ornstein-Uhlenbeck Process -- 8.5 Outlook on Econophysics -- 8.6 Exercises -- 9 Nucleation in Supersaturated Vapors -- 9.1 Dynamics of First-Order Phase Transitions in Finite Systems -- 9.2 Condensation of Supersaturated Vapor -- 9.3 The General Multi-Droplet Scenario -- 9.4 Detailed Balance and Free Energy -- 9.5 Relaxation to the Free Energy Minimum -- 9.6 Chemical Potentials -- 9.7 Exercises -- 10 Vehicular Traffic -- 10.1 The Car-Following Theory -- 10.2 The Optimal Velocity Model and its Langevin Approach -- 10.3 Traffic Jam Formation on a Circular Road -- 10.4 Metastability Near Phase Transitions in Traffic Flow -- 10.5 Car Cluster Formation as First-Order Phase Transition -- 10.6 Thermodynamics of Traffic Flow -- 10.7 Exercises -- 11 Noise-Induced Phase Transitions -- 11.1 Equilibrium and Nonequilibrium Phase Transitions -- 11.2 Types of Stochastic Differential Equations -- 11.3 Transformation of Random Variables -- 11.4 Forms of the Fokker-Planck Equation -- 11.5 The Verhulst Model of Third Order -- 11.6 The Genetic Model -- 11.7 Noise-Induced Instability in Geometric Brownian Motion -- 11.8 System Dynamics with Stagnation -- 11.9 Oscillator with Dynamical Traps -- 11.10 Dynamics with Traps in a Chain of Oscillators -- 11.11 Self-Freezing Model for Multi-Lane Traffic -- 11.12 Exercises -- 12 Many-Particle Systems.
12.1 Hopping Models with Zero-Range Interaction -- 12.2 The Zero-Range Model of Traffic Flow -- 12.3 Transition Rates and Phase Separation -- 12.4 Metastability -- 12.5 Monte Carlo Simulations of the Hopping Model -- 12.6 Fundamental Diagram of the Zero-Range Model -- 12.7 Polarization Kinetics in Ferroelectrics with Fluctuations -- 12.8 Exercises -- Epilog -- References -- Index.
Record Nr. UNINA-9910795983603321
Mahnke Reinhard  
Weinheim : , : John Wiley & Sons, Incorporated, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Physics of Stochastic Processes : How Randomness Acts in Time
Physics of Stochastic Processes : How Randomness Acts in Time
Autore Mahnke Reinhard
Edizione [1st ed.]
Pubbl/distr/stampa Weinheim : , : John Wiley & Sons, Incorporated, , 2009
Descrizione fisica 1 online resource (450 pages)
Disciplina 519.23
Altri autori (Persone) KaupuzsJevgenijs
LubashevskyIhor
Soggetto topico Stochastic processes
Random measures
Statistical physics
Stochastic processes -- Problems, exercises, etc
Random measures -- Problems, exercises, etc
Statistical physics -- Problems, exercises, etc
Soggetto genere / forma Electronic books.
ISBN 9783527626106
9783527408405
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Physics of Stochastic Processes -- Contents -- Preface -- Part I Basic Mathematical Description -- 1 Fundamental Concepts -- 1.1 Wiener Process, Adapted Processes and Quadratic Variation -- 1.2 The Space of Square Integrable Random Variables -- 1.3 The Ito Integral and the Ito Formula -- 1.4 The Kolmogorov Differential Equation and the Fokker-Planck Equation -- 1.5 Special Diffusion Processes -- 1.6 Exercises -- 2 Multidimensional Approach -- 2.1 Bounded Multidimensional Region -- 2.2 From Chapman-Kolmogorov Equation to Fokker-Planck Description -- 2.2.1 The Backward Fokker-Planck Equation -- 2.2.2 Boundary Singularities -- 2.2.3 The Forward Fokker-Planck Equation -- 2.2.4 Boundary Relations -- 2.3 Different Types of Boundaries -- 2.4 Equivalent Lattice Representation of Random Walks Near the Boundary -- 2.4.1 Diffusion Tensor Representations -- 2.4.2 Equivalent Lattice Random Walks -- 2.4.3 Properties of the Boundary Layer -- 2.5 Expression for Boundary Singularities -- 2.6 Derivation of Singular Boundary Scaling Properties -- 2.6.1 Moments of the Walker Distribution and the Generating Function -- 2.6.2 Master Equation for Lattice Random Walks and its General Solution -- 2.6.3 Limit of Multiple-Step Random Walks on Small Time Scales -- 2.6.4 Continuum Limit and a Boundary Model -- 2.7 Boundary Condition for the Backward Fokker-Planck Equation -- 2.8 Boundary Condition for the Forward Fokker-Planck Equation -- 2.9 Concluding Remarks -- 2.10 Exercises -- Part II Physics of Stochastic Processes -- 3 The Master Equation -- 3.1 Markovian Stochastic Processes -- 3.2 The Master Equation -- 3.3 One-Step Processes in Finite Systems -- 3.4 The First-Passage Time Problem -- 3.5 The Poisson Process in Closed and Open Systems -- 3.6 The Two-Level System -- 3.7 The Three-Level System -- 3.8 Exercises -- 4 The Fokker-Planck Equation.
4.1 General Fokker-Planck Equations -- 4.2 Bounded Drift-Diffusion in One Dimension -- 4.3 The Escape Problem and its Solution -- 4.4 Derivation of the Fokker-Planck Equation -- 4.5 Fokker-Planck Dynamics in Finite State Space -- 4.6 Fokker-Planck Dynamics with Coordinate-Dependent Diffusion Coefficient -- 4.7 Alternative Method of Solving the Fokker-Planck Equation -- 4.8 Exercises -- 5 The Langevin Equation -- 5.1 A System of Many Brownian Particles -- 5.2 A Traditional View of the Langevin Equation -- 5.3 Additive White Noise -- 5.4 Spectral Analysis -- 5.5 Brownian Motion in Three-Dimensional Velocity Space -- 5.6 Stochastic Differential Equations -- 5.7 The Standard Wiener Process -- 5.8 Arithmetic Brownian Motion -- 5.9 Geometric Brownian Motion -- 5.10 Exercises -- Part III Applications -- 6 One-Dimensional Diffusion -- 6.1 Random Walk on a Line and Diffusion: Main Results -- 6.2 A Drunken Sailor as Random Walker -- 6.3 Diffusion with Natural Boundaries -- 6.4 Diffusion in a Finite Interval with Mixed Boundaries -- 6.5 The Mirror Method and Time Lag -- 6.6 Maximum Value Distribution -- 6.7 Summary of Results for Diffusion in a Finite Interval -- 6.7.1 Reflected Diffusion -- 6.7.2 Diffusion in a Semi-Open System -- 6.7.3 Diffusion in an Open System -- 6.8 Exercises -- 7 Bounded Drift-Diffusion Motion -- 7.1 Drift-Diffusion Equation with Natural Boundaries -- 7.2 Drift-Diffusion Problem with Absorbing and Reflecting Boundaries -- 7.3 Dimensionless Drift-Diffusion Equation -- 7.4 Solution in Terms of Orthogonal Eigenfunctions -- 7.5 First-Passage Time Probability Density -- 7.6 Cumulative Breakdown Probability -- 7.7 The Limiting Case for Large Positive Values of the Control Parameter -- 7.8 A Brief Survey of the Exact Solution -- 7.8.1 Probability Density -- 7.8.2 Outflow Probability Density.
7.8.3 First Moment of the Outflow Probability Density -- 7.8.4 Second Moment of the Outflow Probability Density -- 7.8.5 Outflow Probability -- 7.9 Relationship to the Sturm-Liouville Theory -- 7.10 Alternative Method by the Backward Fokker-Planck Equation -- 7.11 Roots of the Transcendental Equation -- 7.12 Exercises -- 8 The Ornstein-Uhlenbeck Process -- 8.1 Definitions and Properties -- 8.2 The Ornstein-Uhlenbeck Process and its Solution -- 8.3 The Ornstein-Uhlenbeck Process with Linear Potential -- 8.4 The Exponential Ornstein-Uhlenbeck Process -- 8.5 Outlook on Econophysics -- 8.6 Exercises -- 9 Nucleation in Supersaturated Vapors -- 9.1 Dynamics of First-Order Phase Transitions in Finite Systems -- 9.2 Condensation of Supersaturated Vapor -- 9.3 The General Multi-Droplet Scenario -- 9.4 Detailed Balance and Free Energy -- 9.5 Relaxation to the Free Energy Minimum -- 9.6 Chemical Potentials -- 9.7 Exercises -- 10 Vehicular Traffic -- 10.1 The Car-Following Theory -- 10.2 The Optimal Velocity Model and its Langevin Approach -- 10.3 Traffic Jam Formation on a Circular Road -- 10.4 Metastability Near Phase Transitions in Traffic Flow -- 10.5 Car Cluster Formation as First-Order Phase Transition -- 10.6 Thermodynamics of Traffic Flow -- 10.7 Exercises -- 11 Noise-Induced Phase Transitions -- 11.1 Equilibrium and Nonequilibrium Phase Transitions -- 11.2 Types of Stochastic Differential Equations -- 11.3 Transformation of Random Variables -- 11.4 Forms of the Fokker-Planck Equation -- 11.5 The Verhulst Model of Third Order -- 11.6 The Genetic Model -- 11.7 Noise-Induced Instability in Geometric Brownian Motion -- 11.8 System Dynamics with Stagnation -- 11.9 Oscillator with Dynamical Traps -- 11.10 Dynamics with Traps in a Chain of Oscillators -- 11.11 Self-Freezing Model for Multi-Lane Traffic -- 11.12 Exercises -- 12 Many-Particle Systems.
12.1 Hopping Models with Zero-Range Interaction -- 12.2 The Zero-Range Model of Traffic Flow -- 12.3 Transition Rates and Phase Separation -- 12.4 Metastability -- 12.5 Monte Carlo Simulations of the Hopping Model -- 12.6 Fundamental Diagram of the Zero-Range Model -- 12.7 Polarization Kinetics in Ferroelectrics with Fluctuations -- 12.8 Exercises -- Epilog -- References -- Index.
Record Nr. UNINA-9910809145603321
Mahnke Reinhard  
Weinheim : , : John Wiley & Sons, Incorporated, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui