Flight formation control [[electronic resource] /] / edited by Jose A. Guerrero, Rogelio Lozano |
Pubbl/distr/stampa | London, : ISTE Ltd. |
Descrizione fisica | 1 online resource (342 p.) |
Disciplina | 629.132/6 |
Altri autori (Persone) |
GuerreroJose A <1977-> (Jose Alfredo)
LozanoR <1954-> (Rogelio) |
Collana | ISTE |
Soggetto topico |
Airplanes - Control systems
Airplanes - Automatic control Drone aircraft - Control systems Drone aircraft - Automatic control Stability of airplanes |
ISBN |
1-118-38719-8
1-299-18849-4 1-118-56325-5 1-118-56322-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Flight Formation Control; Title Page; Copyright Page; Table of Contents; Chapter 1. Introduction; 1.1. Motivation; 1.2. Historical background; 1.2.1. Aviation history; 1.2.2. Evolution of UAVs; 1.2.3. UAV classification; 1.3. Flight control; 1.4. Flight formation control; 1.4.1. Multiple-input and multiple-output; 1.4.2. Leader/follower; 1.4.3. Virtual structure; 1.4.4. Behavior-based control; 1.4.5. Passivity-based control; 1.5. Outline of the book; 1.6. Bibliography; Chapter 2. Theoretical Preliminaries; 2.1. Passivity; 2.2. Graph theory; 2.3. Robustness problems
2.3.1. Representation of the parametric uncertainty2.3.2. Families of polynomials; 2.4. Bibliography; Chapter 3. Multiagent Coordination Strategies; 3.1. Introduction; 3.2. Controllability and observability of interconnections; 3.2.1. Cyclic topology; 3.2.2. Chain topology: input and output on agent 1; 3.2.3. Chain topology: input and output on agent 2; 3.2.4. Eigenvalues and eigenvectors of the system; 3.2.5. General case; 3.2.6. The cyclic topology in the general case; 3.2.6.1. Observability; 3.2.6.2. Controllability; 3.2.7. The chain topology in the general case; 3.2.7.1. Controllability 3.2.7.2. Observability3.2.8. Combinations of chain and cyclic topologies; 3.2.8.1. Controllability; 3.2.8.2. Observability; 3.2.9. Simple configurations that are either non-controllable or non-observable; 3.2.9.1. Example 1; 3.2.9.2. Example 2; 3.2.9.3. Example 3; 3.2.9.4. Example 4; 3.2.9.5. Example 5; 3.3. Formation leader tracking; 3.3.1. Formation leader tracking in the general case; 3.3.2. Observer design; 3.3.3. Simulations; 3.4. Time-varying trajectory tracking; 3.5. Linear high-order multiagent consensus; 3.5.1. Trajectory-tracking control; 3.6. Conclusion; 3.7. Bibliography Chapter 4. Robust Control Design of Multiagent Systems with Parametric Uncertainty4.1. Introduction; 4.2. Robust control design; 4.3. Robust stability analysis; 4.3.1. Robust strict positive realness; 4.3.2. Robust absolute stability; 4.4. Robust stability of time-delay systems; 4.5. Application to multiagent systems; 4.5.1. Cyclic topology; 4.5.2. Chain topology; 4.5.3. Balanced graph topology; 4.6. Conclusions; 4.7. Bibliography; Chapter 5. On Adaptive and Robust Controlled Synchronization of Networked Robotic Systems on Strongly Connected Graphs; 5.1. Summary; 5.2. Introduction 5.3. Problem formulation5.4. Adaptive controlled synchronization on strongly connected graphs; 5.4.1. Delay-free synchronization; 5.4.2. Synchronization with time delay; 5.5. Robust controlled synchronization on strongly connected graph; 5.5.1. Delay-free synchronization; 5.5.2. Synchronization with time delay; 5.6. Numerical examples; 5.6.1. Adaptive tracking algorithm; 5.6.2. Robust tracking algorithm; 5.6.3. Disturbances; 5.7. Conclusions; 5.8. Appendix; 5.8.1. Robotic system; 5.8.2. Graph theory; 5.9. Bibliography; Chapter 6. Modeling and Control of Mini UAV; 6.1. Introduction 6.2. General model |
Record Nr. | UNINA-9910141502903321 |
London, : ISTE Ltd. | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Flight formation control / / edited by Jose A. Guerrero, Rogelio Lozano |
Edizione | [1st ed.] |
Pubbl/distr/stampa | London, : ISTE Ltd. |
Descrizione fisica | 1 online resource (342 p.) |
Disciplina | 629.132/6 |
Altri autori (Persone) |
GuerreroJose A <1977-> (Jose Alfredo)
LozanoR <1954-> (Rogelio) |
Collana | ISTE |
Soggetto topico |
Airplanes - Control systems
Airplanes - Automatic control Drone aircraft - Control systems Drone aircraft - Automatic control Stability of airplanes |
ISBN |
1-118-38719-8
1-299-18849-4 1-118-56325-5 1-118-56322-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Flight Formation Control; Title Page; Copyright Page; Table of Contents; Chapter 1. Introduction; 1.1. Motivation; 1.2. Historical background; 1.2.1. Aviation history; 1.2.2. Evolution of UAVs; 1.2.3. UAV classification; 1.3. Flight control; 1.4. Flight formation control; 1.4.1. Multiple-input and multiple-output; 1.4.2. Leader/follower; 1.4.3. Virtual structure; 1.4.4. Behavior-based control; 1.4.5. Passivity-based control; 1.5. Outline of the book; 1.6. Bibliography; Chapter 2. Theoretical Preliminaries; 2.1. Passivity; 2.2. Graph theory; 2.3. Robustness problems
2.3.1. Representation of the parametric uncertainty2.3.2. Families of polynomials; 2.4. Bibliography; Chapter 3. Multiagent Coordination Strategies; 3.1. Introduction; 3.2. Controllability and observability of interconnections; 3.2.1. Cyclic topology; 3.2.2. Chain topology: input and output on agent 1; 3.2.3. Chain topology: input and output on agent 2; 3.2.4. Eigenvalues and eigenvectors of the system; 3.2.5. General case; 3.2.6. The cyclic topology in the general case; 3.2.6.1. Observability; 3.2.6.2. Controllability; 3.2.7. The chain topology in the general case; 3.2.7.1. Controllability 3.2.7.2. Observability3.2.8. Combinations of chain and cyclic topologies; 3.2.8.1. Controllability; 3.2.8.2. Observability; 3.2.9. Simple configurations that are either non-controllable or non-observable; 3.2.9.1. Example 1; 3.2.9.2. Example 2; 3.2.9.3. Example 3; 3.2.9.4. Example 4; 3.2.9.5. Example 5; 3.3. Formation leader tracking; 3.3.1. Formation leader tracking in the general case; 3.3.2. Observer design; 3.3.3. Simulations; 3.4. Time-varying trajectory tracking; 3.5. Linear high-order multiagent consensus; 3.5.1. Trajectory-tracking control; 3.6. Conclusion; 3.7. Bibliography Chapter 4. Robust Control Design of Multiagent Systems with Parametric Uncertainty4.1. Introduction; 4.2. Robust control design; 4.3. Robust stability analysis; 4.3.1. Robust strict positive realness; 4.3.2. Robust absolute stability; 4.4. Robust stability of time-delay systems; 4.5. Application to multiagent systems; 4.5.1. Cyclic topology; 4.5.2. Chain topology; 4.5.3. Balanced graph topology; 4.6. Conclusions; 4.7. Bibliography; Chapter 5. On Adaptive and Robust Controlled Synchronization of Networked Robotic Systems on Strongly Connected Graphs; 5.1. Summary; 5.2. Introduction 5.3. Problem formulation5.4. Adaptive controlled synchronization on strongly connected graphs; 5.4.1. Delay-free synchronization; 5.4.2. Synchronization with time delay; 5.5. Robust controlled synchronization on strongly connected graph; 5.5.1. Delay-free synchronization; 5.5.2. Synchronization with time delay; 5.6. Numerical examples; 5.6.1. Adaptive tracking algorithm; 5.6.2. Robust tracking algorithm; 5.6.3. Disturbances; 5.7. Conclusions; 5.8. Appendix; 5.8.1. Robotic system; 5.8.2. Graph theory; 5.9. Bibliography; Chapter 6. Modeling and Control of Mini UAV; 6.1. Introduction 6.2. General model |
Record Nr. | UNINA-9910827582003321 |
London, : ISTE Ltd. | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Unmanned aerial vehicles [[electronic resource] ] : embedded control / / edited by Rogelio Lozano |
Autore | Lozano Rogelio |
Edizione | [1st edition] |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (346 p.) |
Disciplina |
629.132/6
629.1326 |
Altri autori (Persone) | LozanoR <1954-> (Rogelio) |
Collana | ISTE |
Soggetto topico |
Drone aircraft - Automatic control
Embedded computer systems |
ISBN |
1-118-59986-1
1-118-59993-4 1-118-59997-7 1-299-18732-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Unmanned Aerial Vehicles; Title Page; Copyright Page; Table of Contents; Chapter 1. Aerodynamic Configurations and Dynamic Models; 1.1. Aerodynamic configurations; 1.2. Dynamic models; 1.2.1. Newton-Euler approach; 1.2.2. Euler-Lagrange approach; 1.2.3. Quaternion approach; 1.2.4. Example: dynamic model of a quad-rotor rotorcraft; 1.3. Bibliography; Chapter 2. Nested Saturation Control for Stabilizing the PVTOL Aircraft; 2.1. Introduction; 2.2. Bibliographical study; 2.3. The PVTOL aircraft model; 2.4. Control strategy; 2.4.1. Control of the vertical displacement y
2.4.2. Control of the roll angle θ and the horizontal displacement x2.4.2.1. Boundedness of θ; 2.4.2.2. Boundedness of θ; 2.4.2.3. Boundedness of x; 2.4.2.4. Boundedness of x; 2.4.2.5. Convergence of θ, θ, x and x to zero; 2.5. Other control strategies for the stabilization of the PVTOL aircraft; 2.6. Experimental results; 2.7. Conclusions; 2.8. Bibliography; Chapter 3. Two-Rotor VTOL Mini UAV: Design, Modeling and Control; 3.1. Introduction; 3.2. Dynamic model; 3.2.1. Kinematics; 3.2.2. Dynamics; 3.2.2.1. Forces acting onthe vehicle; 3.2.2.2. Torques acting on the vehicle 3.2.3. Model for control analysis3.3. Control strategy; 3.3.1. Altitude control; 3.3.2. Horizontal motion control; 3.3.3. Attitude control; 3.4. Experimental setup; 3.4.1. Onboard flight system (OFS); 3.4.2. Outboard visual system; 3.4.2.1. Position; 3.4.2.2. Optical flow; 3.4.3. Experimental results; 3.5. Concluding remarks; 3.6. Bibliography; Chapter 4. Autonomous Hovering of a Two-Rotor UAV; 4.1. Introduction; 4.2. Two-rotor UAV; 4.2.1. Description; 4.2.2. Dynamic model; 4.2.2.1. Translational motion; 4.2.2.2. Rotational motion; 4.2.2.3. Reduced model; 4.3. Control algorithm design 4.4. Experimental platform4.4.1. Real-time PC-control system (PCCS); 4.4.1.1. Sensors and communication hardware; 4.4.2. Experimental results; 4.5. Conclusion; 4.6. Bibliography; Chapter 5. Modeling and Control of a Convertible Plane UAV; 5.1. Introduction; 5.2. Convertible plane UAV; 5.2.1. Vertical mode; 5.2.2. Transition maneuver; 5.2.3. Horizontal mode; 5.3. Mathematical model; 5.3.1. Translation of the vehicle; 5.3.2. Orientation of the vehicle; 5.3.2.1. Euler angles; 5.3.2.2. Aerodynamic axes; 5.3.2.3. Torques; 5.3.3. Equations of motion; 5.4. Controller design; 5.4.1. Hover control 5.4.1.1. Axial system5.4.1.2. Longitudinal system; 5.4.1.3. Lateral system; 5.4.1.4. Simulation and experimental results; 5.4.2. Transition maneuver control; 5.4.3. Horizontal flight control; 5.5. Embedded system; 5.5.1. Experimental platform; 5.5.2. Microcontroller; 5.5.3. Inertial measurement unit (IMU); 5.5.4. Sensor fusion; 5.6. Conclusions and future works; 5.6.1. Conclusions; 5.6.2. Future works; 5.7. Bibliography; Chapter 6. Control of Different UAVs with Tilting Rotors; 6.1. Introduction; 6.2. Dynamic model of a flying VTOL vehicle; 6.2.1. Kinematics; 6.2.2. Dynamics 6.3. Attitude control of a flying VTOL vehicle |
Record Nr. | UNINA-9910138856303321 |
Lozano Rogelio | ||
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Unmanned aerial vehicles [[electronic resource] ] : embedded control / / edited by Rogelio Lozano |
Autore | Lozano Rogelio |
Edizione | [1st edition] |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (346 p.) |
Disciplina |
629.132/6
629.1326 |
Altri autori (Persone) | LozanoR <1954-> (Rogelio) |
Collana | ISTE |
Soggetto topico |
Drone aircraft - Automatic control
Embedded computer systems |
ISBN |
1-118-59986-1
1-118-59993-4 1-118-59997-7 1-299-18732-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Unmanned Aerial Vehicles; Title Page; Copyright Page; Table of Contents; Chapter 1. Aerodynamic Configurations and Dynamic Models; 1.1. Aerodynamic configurations; 1.2. Dynamic models; 1.2.1. Newton-Euler approach; 1.2.2. Euler-Lagrange approach; 1.2.3. Quaternion approach; 1.2.4. Example: dynamic model of a quad-rotor rotorcraft; 1.3. Bibliography; Chapter 2. Nested Saturation Control for Stabilizing the PVTOL Aircraft; 2.1. Introduction; 2.2. Bibliographical study; 2.3. The PVTOL aircraft model; 2.4. Control strategy; 2.4.1. Control of the vertical displacement y
2.4.2. Control of the roll angle θ and the horizontal displacement x2.4.2.1. Boundedness of θ; 2.4.2.2. Boundedness of θ; 2.4.2.3. Boundedness of x; 2.4.2.4. Boundedness of x; 2.4.2.5. Convergence of θ, θ, x and x to zero; 2.5. Other control strategies for the stabilization of the PVTOL aircraft; 2.6. Experimental results; 2.7. Conclusions; 2.8. Bibliography; Chapter 3. Two-Rotor VTOL Mini UAV: Design, Modeling and Control; 3.1. Introduction; 3.2. Dynamic model; 3.2.1. Kinematics; 3.2.2. Dynamics; 3.2.2.1. Forces acting onthe vehicle; 3.2.2.2. Torques acting on the vehicle 3.2.3. Model for control analysis3.3. Control strategy; 3.3.1. Altitude control; 3.3.2. Horizontal motion control; 3.3.3. Attitude control; 3.4. Experimental setup; 3.4.1. Onboard flight system (OFS); 3.4.2. Outboard visual system; 3.4.2.1. Position; 3.4.2.2. Optical flow; 3.4.3. Experimental results; 3.5. Concluding remarks; 3.6. Bibliography; Chapter 4. Autonomous Hovering of a Two-Rotor UAV; 4.1. Introduction; 4.2. Two-rotor UAV; 4.2.1. Description; 4.2.2. Dynamic model; 4.2.2.1. Translational motion; 4.2.2.2. Rotational motion; 4.2.2.3. Reduced model; 4.3. Control algorithm design 4.4. Experimental platform4.4.1. Real-time PC-control system (PCCS); 4.4.1.1. Sensors and communication hardware; 4.4.2. Experimental results; 4.5. Conclusion; 4.6. Bibliography; Chapter 5. Modeling and Control of a Convertible Plane UAV; 5.1. Introduction; 5.2. Convertible plane UAV; 5.2.1. Vertical mode; 5.2.2. Transition maneuver; 5.2.3. Horizontal mode; 5.3. Mathematical model; 5.3.1. Translation of the vehicle; 5.3.2. Orientation of the vehicle; 5.3.2.1. Euler angles; 5.3.2.2. Aerodynamic axes; 5.3.2.3. Torques; 5.3.3. Equations of motion; 5.4. Controller design; 5.4.1. Hover control 5.4.1.1. Axial system5.4.1.2. Longitudinal system; 5.4.1.3. Lateral system; 5.4.1.4. Simulation and experimental results; 5.4.2. Transition maneuver control; 5.4.3. Horizontal flight control; 5.5. Embedded system; 5.5.1. Experimental platform; 5.5.2. Microcontroller; 5.5.3. Inertial measurement unit (IMU); 5.5.4. Sensor fusion; 5.6. Conclusions and future works; 5.6.1. Conclusions; 5.6.2. Future works; 5.7. Bibliography; Chapter 6. Control of Different UAVs with Tilting Rotors; 6.1. Introduction; 6.2. Dynamic model of a flying VTOL vehicle; 6.2.1. Kinematics; 6.2.2. Dynamics 6.3. Attitude control of a flying VTOL vehicle |
Record Nr. | UNINA-9910830706803321 |
Lozano Rogelio | ||
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Unmanned aerial vehicles : embedded control / / edited by Rogelio Lozano |
Edizione | [1st edition] |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (346 p.) |
Disciplina | 629.132/6 |
Altri autori (Persone) | LozanoR <1954-> (Rogelio) |
Collana | ISTE |
Soggetto topico |
Drone aircraft - Automatic control
Embedded computer systems |
ISBN |
1-118-59986-1
1-118-59993-4 1-118-59997-7 1-299-18732-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Unmanned Aerial Vehicles; Title Page; Copyright Page; Table of Contents; Chapter 1. Aerodynamic Configurations and Dynamic Models; 1.1. Aerodynamic configurations; 1.2. Dynamic models; 1.2.1. Newton-Euler approach; 1.2.2. Euler-Lagrange approach; 1.2.3. Quaternion approach; 1.2.4. Example: dynamic model of a quad-rotor rotorcraft; 1.3. Bibliography; Chapter 2. Nested Saturation Control for Stabilizing the PVTOL Aircraft; 2.1. Introduction; 2.2. Bibliographical study; 2.3. The PVTOL aircraft model; 2.4. Control strategy; 2.4.1. Control of the vertical displacement y
2.4.2. Control of the roll angle θ and the horizontal displacement x2.4.2.1. Boundedness of θ; 2.4.2.2. Boundedness of θ; 2.4.2.3. Boundedness of x; 2.4.2.4. Boundedness of x; 2.4.2.5. Convergence of θ, θ, x and x to zero; 2.5. Other control strategies for the stabilization of the PVTOL aircraft; 2.6. Experimental results; 2.7. Conclusions; 2.8. Bibliography; Chapter 3. Two-Rotor VTOL Mini UAV: Design, Modeling and Control; 3.1. Introduction; 3.2. Dynamic model; 3.2.1. Kinematics; 3.2.2. Dynamics; 3.2.2.1. Forces acting onthe vehicle; 3.2.2.2. Torques acting on the vehicle 3.2.3. Model for control analysis3.3. Control strategy; 3.3.1. Altitude control; 3.3.2. Horizontal motion control; 3.3.3. Attitude control; 3.4. Experimental setup; 3.4.1. Onboard flight system (OFS); 3.4.2. Outboard visual system; 3.4.2.1. Position; 3.4.2.2. Optical flow; 3.4.3. Experimental results; 3.5. Concluding remarks; 3.6. Bibliography; Chapter 4. Autonomous Hovering of a Two-Rotor UAV; 4.1. Introduction; 4.2. Two-rotor UAV; 4.2.1. Description; 4.2.2. Dynamic model; 4.2.2.1. Translational motion; 4.2.2.2. Rotational motion; 4.2.2.3. Reduced model; 4.3. Control algorithm design 4.4. Experimental platform4.4.1. Real-time PC-control system (PCCS); 4.4.1.1. Sensors and communication hardware; 4.4.2. Experimental results; 4.5. Conclusion; 4.6. Bibliography; Chapter 5. Modeling and Control of a Convertible Plane UAV; 5.1. Introduction; 5.2. Convertible plane UAV; 5.2.1. Vertical mode; 5.2.2. Transition maneuver; 5.2.3. Horizontal mode; 5.3. Mathematical model; 5.3.1. Translation of the vehicle; 5.3.2. Orientation of the vehicle; 5.3.2.1. Euler angles; 5.3.2.2. Aerodynamic axes; 5.3.2.3. Torques; 5.3.3. Equations of motion; 5.4. Controller design; 5.4.1. Hover control 5.4.1.1. Axial system5.4.1.2. Longitudinal system; 5.4.1.3. Lateral system; 5.4.1.4. Simulation and experimental results; 5.4.2. Transition maneuver control; 5.4.3. Horizontal flight control; 5.5. Embedded system; 5.5.1. Experimental platform; 5.5.2. Microcontroller; 5.5.3. Inertial measurement unit (IMU); 5.5.4. Sensor fusion; 5.6. Conclusions and future works; 5.6.1. Conclusions; 5.6.2. Future works; 5.7. Bibliography; Chapter 6. Control of Different UAVs with Tilting Rotors; 6.1. Introduction; 6.2. Dynamic model of a flying VTOL vehicle; 6.2.1. Kinematics; 6.2.2. Dynamics 6.3. Attitude control of a flying VTOL vehicle |
Record Nr. | UNINA-9910877551703321 |
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|