top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Reinforcement learning from scratch : understanding current approaches - with examples in Java and Greenfoot / / Uwe Lorenz
Reinforcement learning from scratch : understanding current approaches - with examples in Java and Greenfoot / / Uwe Lorenz
Autore Lorenz Uwe
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (195 pages)
Disciplina 005.133
Soggetto topico Java (Computer program language)
Reinforcement learning
Java (Llenguatge de programació)
Aprenentatge per reforç (Intel·ligència artificial)
Soggetto genere / forma Llibres electrònics
ISBN 9783031090301
9783031090295
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Introduction -- Contents -- 1: Reinforcement Learning as a Subfield of Machine Learning -- 1.1 Machine Learning as Automated Processing of Feedback from the Environment -- 1.2 Machine Learning -- 1.3 Reinforcement Learning with Java -- Bibliography -- 2: Basic Concepts of Reinforcement Learning -- 2.1 Agents -- 2.2 The Policy of the Agent -- 2.3 Evaluation of States and Actions (Q-Function, Bellman Equation) -- Bibliography -- 3: Optimal Decision-Making in a Known Environment -- 3.1 Value Iteration -- 3.1.1 Target-Oriented Condition Assessment ("Backward Induction") -- 3.1.2 Policy-Based State Valuation (Reward Prediction) -- 3.2 Iterative Policy Search -- 3.2.1 Direct Policy Improvement -- 3.2.2 Mutual Improvement of Policy and Value Function -- 3.3 Optimal Policy in a Board Game Scenario -- 3.4 Summary -- Bibliography -- 4: Decision-Making and Learning in an Unknown Environment -- 4.1 Exploration vs. Exploitation -- 4.2 Retroactive Processing of Experience ("Model-Free Reinforcement Learning") -- 4.2.1 Goal-Oriented Learning ("Value-Based") -- Subsequent evaluation of complete episodes ("Monte Carlo" Method) -- Immediate Valuation Using the Temporal Difference (Q- and SARSA Algorithm) -- Consideration of the Action History (Eligibility Traces) -- 4.2.2 Policy Search -- Monte Carlo Tactics Search -- Evolutionary Strategies -- Monte Carlo Policy Gradient (REINFORCE) -- 4.2.3 Combined Methods (Actor-Critic) -- "Actor-Critic" Policy Gradients -- Technical Improvements to the Actor-Critic Architecture -- Feature Vectors and Partially Observable Environments -- 4.3 Exploration with Predictive Simulations ("Model-Based Reinforcement Learning") -- 4.3.1 Dyna-Q -- 4.3.2 Monte Carlo Rollout -- 4.3.3 Artificial Curiosity -- 4.3.4 Monte Carlo Tree Search (MCTS) -- 4.3.5 Remarks on the Concept of Intelligence.
4.4 Systematics of the Learning Methods -- Bibliography -- 5: Artificial Neural Networks as Estimators for State Values and the Action Selection -- 5.1 Artificial Neural Networks -- 5.1.1 Pattern Recognition with the Perceptron -- 5.1.2 The Adaptability of Artificial Neural Networks -- 5.1.3 Backpropagation Learning -- 5.1.4 Regression with Multilayer Perceptrons -- 5.2 State Evaluation with Generalizing Approximations -- 5.3 Neural Estimators for Action Selection -- 5.3.1 Policy Gradient with Neural Networks -- 5.3.2 Proximal Policy Optimization -- 5.3.3 Evolutionary Strategy with a Neural Policy -- Bibliography -- 6: Guiding Ideas in Artificial Intelligence over Time -- 6.1 Changing Guiding Ideas -- 6.2 On the Relationship Between Humans and Artificial Intelligence -- Bibliography.
Record Nr. UNISA-996495167903316
Lorenz Uwe  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Reinforcement Learning From Scratch : Understanding Current Approaches - with Examples in Java and Greenfoot / / by Uwe Lorenz
Reinforcement Learning From Scratch : Understanding Current Approaches - with Examples in Java and Greenfoot / / by Uwe Lorenz
Autore Lorenz Uwe
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (195 pages)
Disciplina 005.133
006.31
Collana Mathematics and Statistics Series
Soggetto topico Machine learning
Java (Computer program language)
Data mining
Machine Learning
Java
Data Mining and Knowledge Discovery
ISBN 9783031090301
9783031090295
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Reinforcement learning as subfield of machine learning -- 2 Basic concepts of reinforcement learning -- 3 Optimal decision-making in a known environment -- 4 decision making and learning in an unknown environment -- 5 Artificial Neural Networks as estimators for state values and the action selection -- 6 Guiding ideas in Artificial Intelligence over time.
Record Nr. UNINA-9910624394103321
Lorenz Uwe  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...