top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Frustrated Materials and Ferroic Glasses / / edited by Turab Lookman, Xiaobing Ren
Frustrated Materials and Ferroic Glasses / / edited by Turab Lookman, Xiaobing Ren
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (283 pages)
Disciplina 620.11
Collana Springer Series in Materials Science
Soggetto topico Magnetism
Magnetic materials
Ceramics
Glass
Composites (Materials)
Composite materials
Nanotechnology
Nanochemistry
Optical materials
Electronic materials
Solid state physics
Magnetism, Magnetic Materials
Ceramics, Glass, Composites, Natural Materials
Nanotechnology and Microengineering
Optical and Electronic Materials
Solid State Physics
ISBN 3-319-96914-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Contributors -- Preface -- 1 What can spin glass theory and analogies tell us about ferroic glasses? -- 2 Spin glasses: Experimental signatures and salient outcomes -- 3 Frustration(s) and the Ice Rule: From Natural Materials to the Deliberate Design of Exotic Behaviors -- 4 Glassy phenomena and precursors in the lattice dynamics -- 5 Relaxor Ferroelectrics -- 6 Probing glassiness in Heuslers via density functional theory calculations -- 7 Strain glasses -- 8 Discrete pseudo spin and continuum models for strain glass -- 9 Mesoscopic modelling of strain glass -- 10 Phase field simulations of ferroic glasses.
Record Nr. UNINA-9910300547303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Information Science for Materials Discovery and Design / / edited by Turab Lookman, Francis J. Alexander, Krishna Rajan
Information Science for Materials Discovery and Design / / edited by Turab Lookman, Francis J. Alexander, Krishna Rajan
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (316 p.)
Disciplina 620.11
Collana Springer Series in Materials Science
Soggetto topico Nanotechnology
Engineering—Materials
Data mining
Statistical physics
Dynamical systems
Materials science
Materials Engineering
Data Mining and Knowledge Discovery
Complex Systems
Characterization and Evaluation of Materials
Statistical Physics and Dynamical Systems
ISBN 3-319-23871-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto From the Contents: Introduction -- Data-Driven Discovery of Physical, Chemical, and Pharmaceutical Materials -- Cross-Validation and Inference in Bioinformatics/Cancer Genomics -- Applying MQSPRs - New Challenges and Opportunities.
Record Nr. UNINA-9910254043203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials Discovery and Design : By Means of Data Science and Optimal Learning / / edited by Turab Lookman, Stephan Eidenbenz, Frank Alexander, Cris Barnes
Materials Discovery and Design : By Means of Data Science and Optimal Learning / / edited by Turab Lookman, Stephan Eidenbenz, Frank Alexander, Cris Barnes
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (266 pages)
Disciplina 006.312
Collana Springer Series in Materials Science
Soggetto topico Physics
Materials science
Data mining
Engineering—Materials
Computer mathematics
Numerical analysis
Numerical and Computational Physics, Simulation
Characterization and Evaluation of Materials
Data Mining and Knowledge Discovery
Materials Engineering
Computational Science and Engineering
Numerical Analysis
ISBN 3-319-99465-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part 1: Learning from Data in Material Science -- Designing Novel Multifunctional Materials via Inverse Optimization Techniques -- Quantifying Uncertainties in First Principles Alloy Thermodynamics -- Forward Modeling of Electron Scattering Modalities for Microstructure Quantification -- The Potential of Network Analysis Strategies to HEDM Data: Classification of Microstructures and Prediction of Incipient Failure -- Part 2: Data and Inference -- Challenges of Diagram extraction and Understanding -- Integration of Computational Reasoning, Machine Learning, and Crowdsourcing for Accelerating Materials Discovery -- Computational Creativity for Materials Science -- Optimal Experimental Design Based on Uncertainty Quantification -- Part 3: High-Throughput Calculations and Experiments Functionality-Driven Design and Discovery -- The Use of Proxies and Data for Guiding Materials Synthesis: Examples of Phosphors and Thermoelectrics -- Big Data from Experiments -- Data-Driven Approaches to Combinatorial Materials Science -- Invariant Representations for Robust Materials Prediction -- Part 4: Data Optimization/Challenges in Analysis of Data for Facilities -- The MGI Data Infrastructure -- Is Rigorous Automated Materials Design and Discovery Possible? -- Improve your Monte Carlo: Learn a Control Variate and Correct it with Stacking -- X-ray Free Electron Laser Studies of Shock-Driven Deformation and Phase Transitions -- Coherent Diffraction Imaging Techniques at 3rd and 4th Generation Light Sources -- 3D Data Challenges from X-ray Synchrotron Tomography -- Part 5: Interference/HPC/Software Integration -- Optimal Bayesian Experimental Design: Formulations and New Computational Strategies -- Optimal Bayesian Inference with Missing Data -- Applying an Experimental Design Loop to Shape Memory Alloys -- Big Data Need Big Theory Too -- Combining Experiments, Simulation and Machine Learning in a Single Materials Platform - A Materials Informatics Approach -- Rethinking the HPC Programming Environment.
Record Nr. UNINA-9910300537803321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui