top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Chemically Deposited Metal Chalcogenide-based Carbon Composites for Versatile Applications / / edited by Fabian I. Ezema, Chandrakant D. Lokhande, Abhishek C. Lokhande
Chemically Deposited Metal Chalcogenide-based Carbon Composites for Versatile Applications / / edited by Fabian I. Ezema, Chandrakant D. Lokhande, Abhishek C. Lokhande
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (435 pages)
Disciplina 620.193
546.3
Soggetto topico Metals
Materials
Carbon
Chemistry
Composite materials
Surface chemistry
Metals and Alloys
Carbon Materials
Composites
Surface Chemistry
ISBN 9783031234019
9783031234002
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. 0D, 1D, 2D and 3D structured chalcogenides for supercapacitor applications -- Chapter 2. 1D, 2D, and 3D structured metal chalcogenides for supercapacitor -- Chapter 3. Chemically deposited Iron Chalcogenides based Carbon composites for Supercapacitor applications -- Chapter 4. Nanostructure design for supercapacitor application -- Chapter 5. Emerging materials for Li-ion capacitor -- Chapter 6. Advances in Fabricating Mn3O4 and its Carbon Composite for Electrochemical Energy -- Chapter 7. Porous Hybrid Electrode Materials for High Energy Density Li-ion and Li-S Batteries -- Chapter 8. Electrode materials for high energy density Li-ion -- Chapter 9. Emerging novel chalcogenide based materials for electro water-splitting -- Chapter 10. Chemical Processing of Cu2SnS3 nanoparticles for printable solar cells -- Chapter 11. Rational engineering of photocathodes for hydrogen production Heterostructure, dye sensitized, perovskite and tandem cells -- Chapter 12. One-Step Solid-State Mechanochemical Synthesis of Metal Chalcogenides as a Perspective Alternative to Traditional Preparation Routes -- Chapter 13. Fundamentals of First-Principles Studies -- Chapter 14. Surface Rare Earth Elements based Non-Enzymatic Glucose Sensor -- Chapter 15. Surface functionalized Iron Oxide (Fe3O4) Nanoparticles for Biomedical Applications.
Record Nr. UNINA-9910686775203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chemically deposited nanocrystalline metal oxide thin films : synthesis, characterizations, and applications / / Fabian I. Ezema, Chandrakant D. Lokhande, Rajan Jose, editors
Chemically deposited nanocrystalline metal oxide thin films : synthesis, characterizations, and applications / / Fabian I. Ezema, Chandrakant D. Lokhande, Rajan Jose, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (931 pages)
Disciplina 621.38152
Soggetto topico Thin films
ISBN 3-030-68462-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Contents -- About the Editors and Contributors -- About the Editors -- Contributors -- Chapter 1: Progress in Solution-Processed Mixed Oxides -- 1.1 Introduction -- 1.2 Solution-Processed Methods for Synthesis of Mixed Oxide -- 1.2.1 Electrodeposition -- 1.2.2 Successive Ionic Layer Adsorption and Reaction (SILAR) -- 1.2.3 Precipitation Method -- 1.2.4 Sol-Gel -- 1.2.5 Chemical Bath Deposition (CBD) -- 1.3 Conclusions -- References -- Chapter 2: Properties and Applications of the Electrochemically Synthesized Metal Oxide Thin Films -- 2.1 Introduction -- 2.2 Electrochemical Synthesis -- 2.3 Electrodeposition of Metal Oxide as Thin Films -- 2.3.1 Zinc Oxide (ZnO) -- 2.3.1.1 Applications of ZnO -- 2.3.2 Copper Oxide (Cu2O) -- 2.3.2.1 Applications of CuO -- 2.3.3 Nickel Oxide (NiO) -- 2.3.3.1 Applications of NiO -- 2.4 Conclusion -- References -- Chapter 3: Structural and Electronic Properties of Various Useful Metal Oxides -- 3.1 Introduction -- 3.2 Structural and Electronic Properties of Various Metal Oxides -- 3.2.1 Titanium Dioxide (TiO2): Local-Density Approximation (LDA) Approach -- 3.2.2 Structural, Cohesive, and Elastic Properties -- 3.2.3 Electronic Structure -- 3.3 Anatase TiO2 Nanocrystals -- 3.3.1 Electronic Properties of Reduced TiO2 Nanocrystals and Stability of Defects -- 3.4 TiO2 Nanocluster and Dye-Nanocluster Systems: Photovoltaic or Photocatalytic Applications -- 3.4.1 Methods and Materials -- 3.4.2 Structural and Electronic Properties of TiO2 Nanocluster and Dye-Nanocluster Systems -- 3.5 Photoexcited TiO2 Nanoparticles -- 3.5.1 Structural Properties -- 3.5.2 Electronic Properties -- 3.6 Indium Oxide (In2O3) -- 3.6.1 Structural and Electronic Properties -- 3.7 Tin(IV) Oxide (SnO2) -- 3.7.1 Structural and Electronic Properties -- 3.8 Zinc Oxide (ZnO) -- 3.8.1 Structural and Electronic Properties.
3.9 Copper (I) Oxide (Cu2O), Copper (II) Oxide (CuO), and Copper Dioxide (CuO2) Nanoclusters -- 3.9.1 Structural and Electronic Properties -- 3.10 Conclusion -- References -- Chapter 4: Properties of Metal Oxides: Insights from First Principles Calculations -- 4.1 Introduction -- 4.2 An Example System: BaTiO3 -- 4.3 Summary -- References -- Chapter 5: Recent Progress in Metal Oxide for Photovoltaic Application -- 5.1 Introduction -- 5.2 Solar Cells for Photovoltaic Applications -- 5.3 Solar Cell Output Parameters -- 5.3.1 Short-Circuit Current (Isc) -- 5.3.2 Open-Circuit Voltage (Voc) -- 5.3.3 Fill Factor (FF) -- 5.3.4 Solar Cell Efficiency -- 5.4 Oxides -- 5.5 Methods of Synthesizing Metal Oxides for Photovoltaic Application -- 5.5.1 Hydrothermal/Solvothermal Approach -- 5.5.2 Thermal Evaporation -- 5.5.3 Sputtering Deposition -- 5.5.4 Coprecipitation -- 5.5.5 Physical Vapor Deposition -- 5.5.6 Chemical Vapor Deposition -- 5.5.7 Sol-Gel Approach -- 5.6 Organic Metal Oxide for Photovoltaic Application -- 5.6.1 Generation of Exciton in Metal Oxides for Photovoltaic Application -- 5.6.2 Exciton Diffusion and Dissociation in Metal Oxides -- 5.6.3 Carrier Transport in Metal Oxide Semiconductors -- 5.6.4 Extraction of Charges at the Electrodes -- 5.7 Inorganic Metal Oxide for Photovoltaic Applications -- 5.7.1 Contributions of Various Inorganic Metal Oxides for the Development of Photovoltaic Cells -- 5.7.2 Efficiency of Inorganic Photovoltaic Solar Cells Made from Metal Oxides -- 5.7.3 Hybrid Metal Oxides as Active Materials for Photovoltaic Application -- 5.7.3.1 Hybrid Perovskite Solar Cells -- 5.7.3.2 Dye-Sensitized Solar Cells (DSSCs) -- 5.8 Active Metal Oxide Roles in Photovoltaic Cells -- 5.8.1 Transparent Electrodes -- 5.8.2 Charge-Blocking Layers -- 5.8.3 Charge Collectors -- 5.8.4 Optical Spacers -- 5.8.5 Intermediate Layers in Tandem Cells.
5.8.6 Stability Enhancers -- 5.9 Review of Some Metal Oxide Materials Used for Photovoltaic Application -- 5.10 Conclusion -- References -- Chapter 6: Structural and Electronic Properties of Metal Oxides and Their Applications in Solar Cells -- 6.1 General Introduction -- 6.2 Structural Properties of Metal Oxides -- 6.3 Electronic Properties of Metal Oxides -- 6.4 Application of Some Transition Metal Oxides in Solar Cells -- 6.4.1 Titanium Dioxide, TiO2 -- 6.4.2 Nickel Oxide, NiO -- 6.4.3 Manganese Oxide, MnO2 -- 6.4.4 Cerium Oxide, CeO2 -- 6.4.5 Cobalt Oxide, CoO -- 6.4.6 Molybdenum Oxide, MoO3 -- 6.5 Charge Transport Mechanism in Metal Oxide/Silicon Solar Cells -- 6.6 Methods of Improving the Efficacy of Transition Metal Oxides -- 6.6.1 Addition of Dopant -- 6.6.2 Formation of Composites -- 6.6.3 Heat/Plasma Treatment -- 6.6.4 Electroplating -- 6.7 Conclusion -- References -- Chapter 7: Optically Active Metal Oxides for Photovoltaic Applications -- 7.1 Introduction -- 7.2 Structure of Thin-Film Solar Cells -- 7.2.1 Ideal Material Properties Requirement in Thin-Film Solar Cells -- 7.3 Metal Oxides in Solar Cells -- 7.4 Application of Metal Oxides in Thin-Film Solar Cells -- 7.4.1 Metal Oxides as Back Contact and Intermediate Barrier Layers in Thin-Film Solar Cells -- 7.4.2 Metal Oxides as Absorber Layers in Thin-Film Solar Cells -- 7.4.3 Metal Oxides as Buffer Layers in Thin-Film Solar Cells -- 7.4.4 Metal Oxides as TCO Layers in Thin-Film Solar Cells -- 7.5 Techniques for the Synthesis of Metal Oxides in Thin-Film Solar Cells -- 7.6 Challenges and Future Scope -- References -- Chapter 8: Metal Oxides for Perovskite Solar Cells -- 8.1 Introduction -- 8.2 Perovskite Solar Cells -- 8.2.1 Working Principle -- 8.2.2 Bandgap Tuning of Perovskite Materials -- 8.2.2.1 Architecture of Perovskite Solar Cells -- 8.3 Metal Oxides -- 8.3.1 ETL -- 8.3.2 TiO2.
8.3.3 SnO2 -- 8.3.4 WO3 -- 8.3.5 ZnO -- 8.3.6 Nb2O5 -- 8.3.7 HTL -- 8.3.8 NiOx -- 8.3.9 CuOx -- 8.3.10 Ternary Oxides -- 8.3.11 Issues with Metal Oxides -- 8.4 Conclusions -- References -- Chapter 9: Doped Metal Oxide Thin Films for Dye-Sensitized Solar Cell and Other Non-Dye-Loaded Photoelectrochemical (PEC) Solar Cell Applications -- 9.1 Introduction -- 9.2 Using Doping as an Effective Method to Engineer Key Properties of ZnO for Enhanced Energy Harvesting -- 9.3 Impacts of Al Impurities on Zinc Oxide Properties -- 9.3.1 Structural Studies -- 9.3.2 Optical Studies -- 9.3.3 Morphological Studies -- 9.4 The Impact of Al-Doped ZnO (AZO) Electrodes on Dye-Sensitize Solar Cell (DSSC) Performance -- 9.5 Effects of Indium Dopant on ZnO Properties -- 9.5.1 Film Thickness Studies -- 9.5.2 Structural Studies -- 9.5.3 Optical Studies -- 9.5.4 Morphological Studies -- 9.5.5 Surface Wettability Studies -- 9.6 The Impact of In-Doped ZnO (IZO) Electrodes on PEC Solar Cell Performance -- 9.7 Conclusions -- References -- Chapter 10: Doped Metal Oxide Thin Films for Enhanced Solar Energy Applications -- 10.1 Introduction -- 10.2 History of Photovoltaics -- 10.3 Photovoltaic Technology -- 10.3.1 Working Principle of a Conventional Silicon Photovoltaic Cell -- 10.3.2 Photovoltaic Cell Performance Characterization -- 10.3.3 Solar Cells -- 10.3.3.1 Short-Circuit Current (Isc) -- 10.3.3.2 Open-Circuit Voltage (Voc) -- 10.3.3.3 Fill Factor (FF) -- 10.3.3.4 Conversion Efficiency -- 10.4 Thin-Film Technology -- 10.4.1 Doping of Thin Films -- 10.4.2 Doped Metal Oxide Solar Cell -- 10.4.2.1 Cobalt Oxide (Co3O4) -- 10.4.2.2 Titanium Dioxide (TiO2) -- 10.4.2.3 Copper Oxide (Cu2O or CuO) -- 10.4.2.4 Ternary Materials -- 10.5 Conclusion -- References -- Chapter 11: Mixed Transition Metal Oxides for Photoelectrochemical Hydrogen Production -- 11.1 Introduction.
11.2 Basic Principles of PEC Water Splitting -- 11.3 Factors Affecting the Water Splitting Performance -- 11.3.1 Bandgap of Photoelectrode Materials -- 11.3.2 Particle Size of Photoelectrode Materials -- 11.3.3 Degree of Crystallinity -- 11.3.4 Dimensions and Surface Areas of Electrode Materials -- 11.3.5 Stability of Photoelectrodes -- 11.3.6 Light Source -- 11.3.7 pH of the Electrolyte -- 11.4 Transition Metal Oxides -- 11.4.1 Classification of Transition Metal Oxides -- 11.4.2 Mixed Transition Metal Oxides -- 11.4.3 Mixed Transition Metal Oxides for Hydrogen Evolution Reaction -- 11.4.4 Mixed Transition Metal Oxides for Oxygen Evolution Reaction -- 11.5 Design, Synthesis, and Characterization of Mixed Transition Metal Oxides -- 11.6 Concluding Remarks -- References -- Chapter 12: Plasmonic Metal Nanoparticles Decorated ZnO Nanostructures for Photoelectrochemical (PEC) Applications -- 12.1 Introduction -- 12.2 Versatility of ZnO -- 12.2.1 Phenomenal Crystal Structure of ZnO -- 12.2.2 Suitability of ZnO for PEC -- 12.2.3 Morphological Variation of ZnO and Their PEC Performance -- 12.2.3.1 Enhanced Light Harvesting -- 12.2.3.2 Localized Surface Plasmon Resonance (LSPR) -- 12.2.3.3 Charge Transport and Separation at Interfaces -- Interfaces Inside Photoelectrodes -- Plasmonic Metal Nanoparticle/ZnO/Semiconductor -- Photoelectrodes and Electrolytes Interfaces -- 12.3 Anti-Photocorrosion -- 12.4 Decoration Vs. Doping -- 12.5 Outlook and Frontiers -- References -- Chapter 13: Oxygen-Deficient Metal Oxide Nanostructures for Photocatalytic Activities -- 13.1 Introduction -- 13.2 Methods for Introducing Oxygen Vacancies in Metal Oxide Nanostructures -- 13.2.1 Doping of Elements -- 13.2.2 Chemical Reduction/Oxidation -- 13.2.3 Electrochemical Reduction -- 13.2.4 Metal Reduction -- 13.2.5 Hydrogenation of the Metal Oxide.
13.2.6 Annealing in Oxygen-Deficient Environment.
Record Nr. UNINA-9910488710703321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui