top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
AI in Multidimensional Signals Analysis and Processing : Proceedings of The 3DIT-MSP&DL 2024
AI in Multidimensional Signals Analysis and Processing : Proceedings of The 3DIT-MSP&DL 2024
Autore Jain Lakhmi C
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer, , 2025
Descrizione fisica 1 online resource (429 pages)
Disciplina 621.367
Altri autori (Persone) KountchevaRoumiana
LiuYingkai
Collana Smart Innovation, Systems and Technologies Series
ISBN 981-9654-08-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911028660803321
Jain Lakhmi C  
Singapore : , : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent 3D Technologies and Augmented Reality : Proceedings of the Fifth International Conference on 3D Imaging Technologies—Multidimensional Signal Processing and Deep Learning, Volume 2 / / edited by Roumen Kountchev (deceased), Srikanta Patnaik, Yingkai Liu, Roumiana Kountcheva
Intelligent 3D Technologies and Augmented Reality : Proceedings of the Fifth International Conference on 3D Imaging Technologies—Multidimensional Signal Processing and Deep Learning, Volume 2 / / edited by Roumen Kountchev (deceased), Srikanta Patnaik, Yingkai Liu, Roumiana Kountcheva
Autore Kountchev (deceased) Roumen
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (342 pages)
Disciplina 006.3
Altri autori (Persone) PatnaikSrikanta
LiuYingkai
KountchevaRoumiana
Collana Smart Innovation, Systems and Technologies
Soggetto topico Computational intelligence
Artificial intelligence
Signal processing
Multimedia systems
Computational Intelligence
Artificial Intelligence
Signal, Speech and Image Processing
Multimedia Information Systems
ISBN 981-9751-84-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Virtual reality image generation and enhancement based on real-time model simplification -- 2. Deep Landscape Design Evaluation System with Multi-scale Visual Attention Mechanism -- 3. The Role and Effect of Deep Learning in Landscape Design Innovation -- 4. Application of 3D Image Technology and Deep Learning in Landscape Design -- 5. The Influence of University Yoga Course Based on VR Technology on university students' Physical Fitness and Special Sports Skills -- 6. Enhancing Mobile Robot Path Planning through Advanced Deep Reinforcement Learning -- 7. Innovative Application of VR Technology in Ceramic Art Design Exhibition -- 8. Deep Learning-based Species Classification using Joint ResNet and Data Augmentation -- 9. Simulation and Application of Digital Display Model Based on Computer Vision and Virtual Reality -- 10. Chinese Image Description Generation Model Based on Recurrent Fusion Encoding.
Record Nr. UNINA-9910886089703321
Kountchev (deceased) Roumen  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multidimensional Signal Processing : Proceedings of the Fifth International Conference on 3D Imaging Technologies--Multidimensional Signal Processing and Deep Learning, Volume 1
Multidimensional Signal Processing : Proceedings of the Fifth International Conference on 3D Imaging Technologies--Multidimensional Signal Processing and Deep Learning, Volume 1
Autore Kountchev Roumen
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer, , 2024
Descrizione fisica 1 online resource (400 pages)
Altri autori (Persone) PatnaikSrikanta
LiuYingkai
KountchevaRoumiana
Collana Smart Innovation, Systems and Technologies Series
ISBN 9789819751815
9819751810
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- Part I Multidimensional Signal Processing -- 1 Evaluation of Ultrasonic Doppler Signal Quality Based on Deep Learning -- 1.1 Introduction -- 1.2 Related Work -- 1.3 Materials and Methods -- 1.3.1 Short-Time Average Magnitude Difference Function -- 1.3.2 Signal Preprocessing -- 1.3.3 DataSet Creation -- 1.4 The Proposed Model -- 1.4.1 The Network Architecture -- 1.4.2 Convolutional Neural Network -- 1.4.3 Long Short-Term Memory -- 1.5 Results -- 1.5.1 Performance Metrics -- 1.5.2 Experimental Setup -- 1.5.3 Performance Evaluations -- 1.6 Conclusions -- References -- 2 Tensor Compression Based on Tensor Train Decomposition -- 2.1 Background -- 2.2 Basic Principle -- 2.2.1 Singular Value Decomposition SVD -- 2.2.2 Tensor and Tensor Decomposition -- 2.2.3 Higher-Order Singular Value Decomposition (HOSVD) -- 2.2.4 Tensor Train Decomposition (TTD) -- 2.3 Experiments and Analysis of Results -- 2.4 Conclusion -- References -- 3 Digital Twin Technology Approach Based on the Hierarchical IDP Tensor Decomposition -- 3.1 Introduction -- 3.2 AI-Based Model for Industry Applications -- 3.3 New Approaches for Hierarchical Data Analysis -- 3.3.1 Hierarchical Decomposition of a Single 3D Tensor Through IDP Based on Neural Networks (NN) with Convolutional Auto-Encoders (CAE) -- 3.3.2 Brief Description of the Convolutional Auto-Encoder -- 3.3.3 Hierarchical Tensor Sequence Decomposition Through Branched Inverse Difference Pyramid, Based on Convolutional Auto-Encoders -- 3.4 Digital Twin Approach Based on the Hierarchical IDP Tensor Decomposition -- 3.5 Conclusions -- References -- 4 Modeling Technology for Complex Dynamic Operating Environment of Power Grid Based on Digital Twins -- 4.1 Introduction -- 4.2 Digital Twin Technology for Power Grids -- 4.3 Digital Modeling and Model Mapping.
4.4 Multi-mode Data Fusion in Complex and Dynamic Working Environment of Power Grid -- 4.5 Multi-source Comprehensive Reconstruction and Entity Hierarchical Processing of Power Grid Environment -- 4.6 Dynamic Update of Station Panoramic Digital Twin Model -- 4.7 Structured Spatiotemporal Big Data Construction Technology Based on Real-Life Twins -- 4.8 Conclusion -- References -- 5 Design of a Digital Twin Platform Based on Distributed Computing and Resource Optimization Algorithms -- 5.1 Introduction -- 5.2 Design of Digital Twin Platform -- 5.2.1 Design Principles -- 5.2.2 Architecture -- 5.3 Database Design -- 5.4 Experimental Evaluation -- 5.5 Conclusions -- References -- 6 Deep Learning Network Optimization Combining 3D Imaging and Multidimensional Signal Processing -- 6.1 Introduction -- 6.1.1 Research Background and Significance -- 6.1.2 Research Status at Home and Abroad -- 6.1.3 Research Content and Innovation Points of This Article -- 6.2 Theoretical Basis -- 6.2.1 Overview of Deep Learning -- 6.2.2 Three-Dimensional Imaging Technology -- 6.2.3 Multidimensional Signal Processing -- 6.3 Methodology -- 6.3.1 Network Architecture Design -- 6.3.2 Preprocessing of 3D Imaging Data -- 6.3.3 Application of Multidimensional Signal Processing Technology -- 6.4 Experimental Design and Results -- 6.4.1 Experimental Environment and Data Set Description -- 6.4.2 Experimental Methods and Procedures -- 6.4.3 Experimental Results -- 6.5 Result Analysis and Discussion -- 6.5.1 Network Performance Analysis -- 6.5.2 Validity Verification of Experimental Results -- 6.5.3 Discussion of Existing Problems and Limitations -- References -- 7 Time Series Prediction Application of Deep Learning in Multidimensional Signal Processing -- 7.1 Introduction -- 7.1.1 Research Background and Importance.
7.1.2 Challenges of Time Series Forecasting and the Potential of Deep Learning -- 7.1.3 Overview of the Main Contributions and Structure of the Paper -- 7.2 Theoretical Background -- 7.2.1 Basic Concepts of Time Series Forecasting -- 7.2.2 Application of Deep Learning in Time Series Analysis -- 7.2.3 Characteristics and Challenges of Multidimensional Signal Processing -- 7.3 Methodology -- 7.3.1 Formal Definition of the Research Problem -- 7.3.2 Selected Deep Learning Model -- 7.3.3 Data Preprocessing and Feature Extraction -- 7.3.4 Model Training and Parameter Optimization -- 7.3.5 Evaluation Criteria -- 7.3.6 Experimental Setup -- 7.3.7 Result Display -- 7.4 Conclusion -- 7.4.1 Research Summary -- 7.4.2 Limitations of the Study -- 7.4.3 Suggestions for Future Research -- References -- 8 Improving Abstractive Summarization with Graph Sequence Model -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Research with Abstractive Summarization Based on Graph Sequence Model -- 8.3.1 A Subsection Sample -- 8.3.2 Text Sequence Construction Diagram Input -- 8.3.3 Calculation of the LINE with Second-Order Proximity -- 8.3.4 Maximizing Possible Output of the Language Decoder -- 8.4 Experiment and Result -- 8.5 Conclusion -- References -- 9 Advancing Semantic Segmentation and Interpretation of 3D Images Through Integrated Deep Learning and Natural Language Processing Techniques -- 9.1 Introduction -- 9.2 Theoretical Basis -- 9.3 Application of Deep Learning Methods in 3D Image Segmentation -- 9.3.1 Basic Structure and Principles of Convolutional Neural Network (CNN) -- 9.3.2 Feature Extraction and Processing of Three-Dimensional Images -- 9.3.3 Design and Implementation of Segmentation Algorithm -- 9.4 Application of Natural Language Processing in Three-Dimensional Image Interpretation -- 9.4.1 Language Model and Natural Language Understanding.
9.4.2 Conversion Method from Image Segmentation to Language Description -- 9.4.3 Implementation and Optimization of Semantic Interpretation -- 9.5 Design and Implementation of Fusion Methods -- 9.5.1 System Architecture and Workflow -- 9.5.2 Integration Strategy of Deep Learning and Natural Language Processing -- 9.5.3 Optimization and Adjustment of Algorithms -- 9.5.4 Comprehensive Experimental Design and Results -- 9.6 Application Cases and Actual Effect Analysis -- 9.6.1 Application Scenario Description -- 9.6.2 System Performance in Practical Applications -- 9.6.3 Case Studies and Analysis -- 9.7 Conclusion -- References -- 10 Children's Toy Product Design Based on Augmented Reality Technology -- 10.1 Introduction -- 10.2 Forms of Application of Augmented Reality Technology in Children's Toy Design -- 10.2.1 Process Optimization and Information Presentation -- 10.2.2 Enhancing Interactivity and Engagement -- 10.2.3 Entertainment and Personalized Experience -- 10.3 Application Strategies of Augmented Reality Technology in Children's Toy Design -- 10.3.1 Personalized Expression -- 10.3.2 Contextualized Display -- 10.3.3 Socialized Sharing -- 10.3.4 Educational Guidance -- 10.4 Application of Augmented Reality Technology in Children's Toy Design -- 10.4.1 Survey Research Proposal -- 10.4.2 Survey Results -- 10.4.3 "Bunny Run" Design -- 10.4.4 Little Bunny AR Application Development -- 10.4.5 Toy Design Results Show -- 10.5 Conclusion -- References -- Part II Feature Fusion and Human Action Analysis -- 11 Based on the Neural Network Classification of Human Behavior Research -- 11.1 Introduction -- 11.2 Model -- 11.2.1 Behavior Recognition Based on Two-Stream Convolutional Networks -- 11.2.2 Extraction of Optical Flow -- 11.2.3 Two-Flow Hybrid Neural Network with Static and Dynamic Features -- 11.3 Experiment -- 11.3.1 Experimental Environment.
11.3.2 Model Implementation Details -- 11.3.3 Experimental Result -- 11.4 Conclusion -- References -- 12 Development of an Independent Adversarial Sample Detection Model, Based on Image Features -- 12.1 Introduction -- 12.2 Related Work -- 12.3 System Design -- 12.4 Analysis of Performance -- 12.5 Conclusions -- 12.6 Discussion -- References -- 13 Visualization and Analysis of CNN Adversarial Training -- 13.1 Introduction -- 13.2 Methodology -- 13.2.1 Dataset Description and Preprocessing -- 13.2.2 Proposed Approach -- 13.2.3 Implementation Details -- 13.3 Results and Discussion -- 13.3.1 Interim Output -- 13.3.2 Distribution -- 13.3.3 Adversarial Training -- 13.4 Conclusion -- References -- 14 Video Violence Detection Method Based on Multi-Feature and Graph Convolutional Network -- 14.1 Introduction -- 14.2 Proposed Violence Detection System -- 14.2.1 Data Process -- 14.2.2 Feature Extraction -- 14.2.3 Feature Fusion -- 14.2.4 GCN-Based Method -- 14.3 Experiments -- 14.3.1 Implementation and Evaluation Methods -- 14.3.2 Experimental Results -- 14.4 Conclusion -- References -- 15 Enhancing Realized Volatility Prediction: An Exploration into LightGBM Baseline Models -- 15.1 Introduction -- 15.2 Methodology -- 15.2.1 Dataset Description and Preprocessing -- 15.2.2 Proposed Approach -- 15.3 Results and Discussion -- 15.3.1 Model Evaluation -- 15.3.2 Model Performance and Analysis -- 15.3.3 Computational Efficiency -- 15.3.4 Discussion -- 15.3.5 Conclusion -- References -- 16 Terminal Anomaly Discovery Technology Based on Service Behavior Deviation -- 16.1 Introduction -- 16.2 Related Technology -- 16.2.1 Multivariate Gaussian Mixture Distribution -- 16.3 Gramian Angular Field -- 16.4 Terminal Anomaly Evaluation Model -- 16.4.1 Business Timing Symbolization Based on Multivariate Gaussian Mixture Distribution.
16.4.2 Multi-Dimensionalization of Time Series Data Based on Gramian Angular Field.
Record Nr. UNINA-9910917783903321
Kountchev Roumen  
Singapore : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui