Fractal Control Theory / / by Shu-Tang Liu, Pei Wang |
Autore | Liu Shu-Tang |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (300 pages) |
Disciplina | 515.39 |
Soggetto topico |
Computational complexity
Control engineering Statistical physics Complexity Control and Systems Theory Applications of Nonlinear Dynamics and Chaos Theory |
ISBN | 981-10-7050-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Fractal Control of Planar Complex Dynamical Systems -- Synchronization of Julia Sets -- Identification Control for Julia Sets -- Fractal Surface and Control of Fractal Surface -- Control and Synchronization of Spatial Julia Sets -- Control of Julia Sets in Complex Henon Systems -- Control of Rational Fractal Sets -- Control and Application of Fractal Growth -- Control on Julia Sets in Switching Complex System. |
Record Nr. | UNINA-9910299932903321 |
Liu Shu-Tang | ||
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mathematical principle and fractal analysis of mesoscale eddy / / Shu-Tang Liu [and three others] |
Autore | Liu Shu-Tang |
Pubbl/distr/stampa | Gateway East, Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (260 pages) |
Disciplina | 620.1064015118 |
Soggetto topico | Eddies - Mathematical models |
ISBN | 981-16-1839-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Abbreviations -- Symbols -- 1 Introduction -- 2 Preliminaries -- 2.1 Limit Cycle and Semi-stable Limit Cycle -- 2.2 Criterion of Semi-stable Limit Cycle -- 2.2.1 Limit Cycles of Oscillatory Approach and Monotone Approach -- 2.2.2 Criterions -- 2.3 Feature Scale, Scale-Free Domain, Fractal, Random Fractal, Dimension -- 2.4 Iterative Function System and Fractal -- 2.5 Dissipative System -- 2.6 Attractor, Attracting Set, Basin of Attraction, Strange Attractor, and Semi-strange Attractor -- 2.7 Relationship between Semi-stable Limit Cycles and Semi-strange Attractors -- 2.8 Elementary Reaction and Reaction Rate -- 2.9 Lagrangian Particle Dynamic System -- 3 Universal Mathematical Model of Mesoscale Eddy -- 3.1 Mesoscale Eddy -- 3.2 Mathematical Model of Mesoscale Eddy -- 3.2.1 Bounded Motion -- 3.2.2 Movement Asymptotic Unity and Uniform Tendency -- 3.3 Universal Mathematical Model of Mesoscale Eddy -- 3.3.1 Momentum of a Stochastic Ellipse -- 3.3.2 Elementary Reaction Rate -- 3.3.3 Basic Mathematical Model of Mesoscale Eddy -- 3.3.4 Universal Mathematical Model of Mesoscale Eddy -- 4 Semi-stable Limit Cycle in Mathematical Model of Mesoscale Eddy -- 4.1 Analysis of Parameter Distribution of Stable and Unstable Limit Cycles -- 4.1.1 α and β are Positive and m is Odd -- 4.1.2 α and β are Negative and m is Odd -- 4.1.3 α is Positive, β is Negative and m is Odd -- 4.1.4 α is Negative, β is Positive and m is Odd -- 4.1.5 m is a Decimal -- 4.2 Stable Limit Cycle -- 4.3 Unstable Limit Cycle -- 4.4 Parameter Distribution Analysis of Semi-stable Limit Cycle -- 4.4.1 Special System -- 4.4.2 General System -- 4.4.3 Different Internal and External Stability -- 4.5 Externally Unstable and Internally Stable Semi-stable Limit Cycle -- 4.6 Externally Stable and Internally Unstable Semi-stable Limit Cycle.
5 Semi-stable Limit Cycles and Mesoscale Eddies -- 5.1 Semi-stable Limit Cycles and Mesoscale Cold Eddies -- 5.2 Semi-stable Limit Cycles and Mesoscale Warm Eddies -- 6 Example Verification -- 6.1 Basic Method -- 6.2 Numerical Experiment -- 6.2.1 Value in Special Circumstances -- 6.2.2 Full Parameter Case -- 6.2.3 Clockwise Model -- 6.2.4 Anti-clockwise Model -- 6.2.5 Algorithm Parallelization and Model Checking in Global Oceans -- 7 Spatiotemporal Structure of Mesoscale Eddies: Self-similar Fractal Behavior -- 7.1 Spatiotemporal Fractal Structure of Mesoscale Warm Eddy -- 7.2 Spatiotemporal Fractal Structure of Mesoscale Cold Eddy -- 7.3 Self-similar Fractal Structure under Affine Transformation -- 7.3.1 Transformation Relations of Spatial Coordinates -- 7.3.2 Spatial Structure -- 8 Mesoscale Eddies: Disk and Columnar Shapes -- 8.1 The Specific Implementation Process of Water Particle Motion ... -- 8.1.1 Specific Transformation -- 8.1.2 Disk-Shaped Mesoscale Cold Eddy -- 8.2 Specific Implementation Process of Water Particle Motion Transformation ... -- 8.2.1 Specific Transformation -- 8.2.2 Disk-Shaped Mesoscale Warm Eddy -- 8.3 Approximate Approximation of Mesoscale Disk-Shaped Mesoscale Eddy -- 9 Fractal Analysis and Prediction for Spatiotemporal Complexity of Mesoscale Eddy -- 9.1 Spatiotemporal Structure of Mesoscale Eddies Based on Universal Model -- 9.1.1 Mesoscale Cold Eddy -- 9.1.2 Mesoscale Warm Eddy -- 9.2 Mathematical Model and Complexity Analysis of Spatiotemporal Fractal Structure of Mesoscale Eddies -- 9.2.1 Fractal Model of Snowflake -- 9.2.2 Fractal Model of Random Snowflake -- 9.2.3 Mesoscale Eddies and Spatiotemporal Fractal Structures of Cantor Self-Similar Fractal Sets -- 9.3 Spatiotemporal Fractal Analysis and Prediction of the Complexity of Mesoscale Eddies -- 9.3.1 Data -- 9.3.2 Fractal Dimension of Mesoscale Eddy. 9.3.3 Fractal Processing of Mesoscale Eddies Profile of the Ocean -- 9.3.4 Three-Dimensional Fractal Structure of Abnormal Salinity -- 9.3.5 Comprehensive Analysis -- 10 Nonlinear Characteristics of Universal Mathematical Model of Mesoscale Eddy -- 10.1 Dissipation of Nonlinear Systems -- 10.2 Chaotic Behavior of Universal Nonlinear System of Mesoscale Eddy -- 10.3 Singularity of Mesoscale Eddy and its Physical Meaning -- 11 Same Solution Between Momentum Balance Equations and Mesoscale Eddies -- 11.1 Navier-Stokes Equation -- 11.2 Same Solution Between the Mathematical Model of Mesoscale Eddy ... -- 11.3 Necessary Conditions for Existence of Mesoscale Eddies in Special Model -- 11.4 Sufficient and Necessary Conditions for the Existence of Mesoscale Eddies in the General Model -- 11.4.1 No Stickiness -- 11.4.2 Stickiness -- 11.4.3 Perturbation Terms of Parameters with Pressure Change Rate -- 11.4.4 Necessary Conditions -- 12 Momentum Balance Equation Based on Truncation Function and Mathematical Model of Mesoscale Eddies -- 12.1 Sufficient Conditions of Mesoscale Eddies for the Two-Dimensional ... -- 12.2 Existence of Mesoscale Eddies in Two-Dimensional Momentum Balance ... -- 12.2.1 β-Plane Approximation and Viscosity -- 12.2.2 β-Plane Approximation and Nonviscosity -- 12.3 Mesoscale Cold and Warm Eddies Produced by Truncation Function and Circulation Factor -- 13 Interpolation Prediction of Mesoscale Eddies -- 14 Random Elliptic Curve and Brownian Motion Trajectory of Mesoscale Eddy -- 14.1 Trajectory of Elliptical Arc -- 14.1.1 Mesoscale Cold Eddy -- 14.1.2 Mesoscale Warm Eddy -- 14.2 Trajectory of Brownian Curve -- 15 Mathematical Model for Edge Waves of Mesoscale Eddies and Its Spatio-Temporal Fractal Structures -- 15.1 Mathematical Model of Edge Waves -- 15.1.1 Poincaré Cross-Section -- 15.1.2 Edge Wave Motion and Its Duffing Dynamical System. 15.2 Mathematical Model of Edge Waves Based on Poincaré ... -- 15.2.1 Generators of Edge Waves -- 15.2.2 A Mathematical Model for Random Fractal of Edge Waves -- 15.3 Fractal Analysis of Internal Structure Complexity of Edge Waves -- 15.4 New Problems Arising from Random Fractal Models of Edge Waves -- Appendix References. |
Record Nr. | UNINA-9910488714703321 |
Liu Shu-Tang | ||
Gateway East, Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Surface chaos and its applications. / / Shu-Tang Liu and Li Zhang |
Autore | Liu Shu-Tang |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (395 pages) : illustrations (chiefly color) |
Disciplina | 700 |
Soggetto topico | Nonlinear theories |
ISBN |
981-16-8228-3
981-16-8229-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction Basic Knowledge Spatial Periodic Orbits and Surface Chaos Surface Chaos and Its Spatial Lyapunov Exponent Surface Chaos and Its Associated Bifurcation and Feigenbaum Problem Prediction-Based Feedback Control of Surface Chaos for Convection System with A Forced Term Spatial Static Bifurcation and Control of 2-D Discrete Dynamical System Holistic Compression Control and Surface Chaos Linear Generalized Synchronization of Surface Chaos Generalized Feedback Synchronization of Surface Chaos Surface Determining Wave Behavior of A Delay 2-D Discrete System Nonlinear Analysis of The Process From The Wave To Surface Chaos Nuclear Fission and Surface Chaos Uniformity and Surface Chaos of Spatial Physics Kinematic System Uniformity of Physical Motion Systems and Surface Chao Surface Chaos Behavior of Molecular Orbit Surface Chaotic Theory and the Growth of Harmful Algal Bloom Surface Chaos-Based Image Encryption Design The Relationships Among Spatial Body Chaos, Cosmic Black Hole and Galaxy |
Record Nr. | UNINA-9910743238203321 |
Liu Shu-Tang | ||
Singapore : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|