top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Strongly interacting matter under rotation / / Francesco Becattini, Jinfeng Liao, Michael Lisa, editors
Strongly interacting matter under rotation / / Francesco Becattini, Jinfeng Liao, Michael Lisa, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (400 pages)
Disciplina 539.7216
Collana Lecture Notes in Physics
Soggetto topico Hadrons
ISBN 3-030-71427-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- About the Editors -- 1 Strongly Interacting Matter Under Rotation: An Introduction -- 1.1 Milestones -- 1.2 Introduction -- 1.3 Accessing Subatomic Vorticity -- 1.4 From Signal to Physics -- 1.4.1 Hydrodynamics as the Basis to Understand Hyperon Polarization -- 1.4.2 Vector Meson Spin Alignment-More Complicated Physics? -- 1.4.3 Future Experimental Work -- 1.5 Summary and Outlook -- 2 Polarization in Relativistic Fluids: A Quantum Field Theoretical Derivation -- 2.1 Introduction -- 2.2 The Spin Density Matrix and the Definition of Mean Spin -- 2.3 The Single-Particle Limit and Global Equilibrium Factorization -- 2.4 The Covariant Wigner Function -- 2.4.1 The Scalar Field -- 2.4.2 The Dirac Field -- 2.5 Fermion Polarization and the Covariant Wigner Function -- 2.6 Polarization From the Angular Momentum Operator -- 2.7 Local Thermodynamic Equilibrium -- 2.7.1 Polarization at Local Thermodynamic Equilibrium -- 2.8 Summary and Outlook -- 3 Thermodynamic Equilibrium of Massless Fermions with Vorticity, Chirality and Electromagnetic Field -- 3.1 Introduction -- 3.2 General Global Equilibrium with Electromagnetic Field -- 3.2.1 Vanishing Electromagnetic Field -- 3.3 Dirac Field in External Electromagnetic Field -- 3.3.1 Symmetries in Constant Electromagnetic Field -- 3.4 Chiral Fermions in Constant Magnetic Field -- 3.4.1 Exact Thermal Solutions -- 3.4.2 Thermodynamic Potential -- 3.4.3 Chiral Fermion Propagator in Magnetic Field -- 3.4.4 Electric Current Mean Value -- 3.4.5 Axial Current Mean Value -- 3.5 Constant Vorticity and Electromagnetic Field -- 3.5.1 Expansion on Thermal Vorticity -- 3.5.2 Currents and Chiral Anomaly -- 4 Exact Solutions in Quantum Field Theory Under Rotation -- 4.1 Introduction -- 4.2 Relativistic Kinetic Theory -- 4.2.1 Rigidly Rotating Thermal Distribution -- 4.2.2 Macroscopic Quantities.
4.3 Quantum Rigidly Rotating Thermal States -- 4.4 Mode Solutions in Cylindrical Coordinates -- 4.5 Quantum Stationary Thermal Expectation Values -- 4.5.1 Fermion Condensate -- 4.5.2 Charge Current -- 4.5.3 Stress-Energy Tensor -- 4.6 Quantum Rigidly Rotating Thermal Expectation Values -- 4.6.1 Fermion Condensate -- 4.6.2 Charge Current -- 4.6.3 Axial Current -- 4.7 Hydrodynamic Analysis of the Quantum Stress-Energy Tensor -- 4.7.1 Stress-Energy Tensor Expectation Values -- 4.7.2 Thermometer Frame -- 4.7.3 Quantum Corrections to the SET -- 4.8 Rigidly Rotating Quantum Systems in Curved Space-Time -- 4.9 Summary -- 5 Particle Polarization, Spin Tensor, and the Wigner Distribution in Relativistic Systems -- 5.1 Introduction -- 5.2 Relativistic Kinetic Theory and Its Limitations -- 5.3 The Relativistic Spin Tensor as a Polarization Sensitive Macroscopic Object -- 5.4 Particle Polarization, the Wigner Distribution, and the Polarization Flux Pseudotensor -- 5.5 Summary -- 6 Quantum Kinetic Description of Spin and Rotation -- 6.1 Introduction -- 6.2 Semi-classical Approaches -- 6.3 Wigner Function Formalism -- 6.4 Spin Polarization in Transport Theory -- 6.5 Anomaly Induced Transport Theory -- 6.6 Degenerate to Hydrodynamics -- 6.7 Experiments and Numerical Simulations -- 6.8 Summary -- 7 Global Polarization Effect and Spin-Orbit Coupling in Strong Interaction -- 7.1 Introduction -- 7.2 Orbital Angular Momenta of QGP in HIC -- 7.2.1 The Reaction Plane in HIC -- 7.2.2 The Global Orbital Angular Momentum -- 7.2.3 The Transverse Gradient of the Momentum Distribution and the Local Orbital Angular Momentum -- 7.3 Spin-Orbit Coupling in a Relativistic Quantum System -- 7.3.1 Dirac Equation and Spin-Orbit Coupling -- 7.3.2 Spin-Orbit Coupling in Systems Under Electromagnetic Interactions -- 7.3.3 Spin-Orbit Coupling in Systems Under Strong Interactions.
7.4 Theoretical Predictions on the Global Polarization Effect of QGP in HIC -- 7.4.1 Global Quark Polarization in QGP in HIC -- 7.4.2 A Kinetic Approach for Quark Polarization Rate -- 7.4.3 Global Hadron Polarization in HIC -- 7.4.4 Comparison with Experiments -- 7.5 Summary and Outlook -- 8 Vorticity and Polarization in Heavy-Ion Collisions: Hydrodynamic Models -- 8.1 Introduction: Vorticities in a Fluid -- 8.2 Polarization of Particles in the Fluid -- 8.3 Hydrodynamic Modelling of Heavy-Ion Collisions -- 8.4 Hydrodynamic Calculations at sqrtsNN=7...62 GeV -- 8.5 Hydrodynamic Calculations at sqrtsNN=200 and 2760 GeV -- 8.6 Acceleration, Grad T and Vorticity Contributions to Polarization -- 9 Vorticity and Spin Polarization in Heavy Ion Collisions: Transport Models -- 9.1 Introduction -- 9.2 Fluid Vorticity -- 9.2.1 Non-relativistic Case -- 9.2.2 Relativistic Case -- 9.3 Spin Polarization in a Vortical Fluid -- 9.4 Vorticity in Heavy Ion Collisions -- 9.4.1 Setup of Computation in Transport Models -- 9.4.2 Results for Kinematic Vorticity -- 9.4.3 Results for Thermal Vorticity -- 9.5 Λ Polarization in Heavy Ion Collisions -- 9.6 Summary -- 10 Connecting Theory to Heavy Ion Experiment -- 10.1 Introduction -- 10.2 Global Polarization Transfer to the Daughter -- 10.3 Spin Density Matrix for the Mother and Its Polarization -- 10.4 Local Polarization Transfer to the Daughter -- 10.5 Average Over the Momentum of the Mother -- 10.6 Theoretical Predictions and Sign Puzzles -- 11 QCD Phase Structure Under Rotation -- 11.1 Introduction -- 11.2 Rotating Frame -- 11.3 Nambu-Jona-Lasinio Model -- 11.4 Rotating Fermions Without Boundary -- 11.5 Boundary Conditions -- 11.6 Rotating Fermions with Background Magnetic Field -- 11.7 Inhomogeneity of Chiral Condensate: A BdG Treatment -- 11.8 Mesonic Superfluidity -- 11.9 Summary.
12 Relativistic Decomposition of the Orbital and the Spin Angular Momentum in Chiral Physics and Feynman's Angular Momentum Paradox -- 12.1 Prologue -- 12.2 Basics-Angular Momenta in an Abelian Gauge Theory -- 12.3 Dirac Fermions and Physical and Pure Gauge Potentials -- 12.4 Potential Angular Momentum and Physical Interpretation -- 12.5 Feynman's Angular Momentum Paradox and Possible Relevance to the Relativistic Nucleus-Nucleus Collision -- 12.6 Epilogue.
Record Nr. UNISA-996466740803316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Strongly interacting matter under rotation / / Francesco Becattini, Jinfeng Liao, Michael Lisa, editors
Strongly interacting matter under rotation / / Francesco Becattini, Jinfeng Liao, Michael Lisa, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (400 pages)
Disciplina 539.7216
Collana Lecture Notes in Physics
Soggetto topico Hadrons
ISBN 3-030-71427-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- About the Editors -- 1 Strongly Interacting Matter Under Rotation: An Introduction -- 1.1 Milestones -- 1.2 Introduction -- 1.3 Accessing Subatomic Vorticity -- 1.4 From Signal to Physics -- 1.4.1 Hydrodynamics as the Basis to Understand Hyperon Polarization -- 1.4.2 Vector Meson Spin Alignment-More Complicated Physics? -- 1.4.3 Future Experimental Work -- 1.5 Summary and Outlook -- 2 Polarization in Relativistic Fluids: A Quantum Field Theoretical Derivation -- 2.1 Introduction -- 2.2 The Spin Density Matrix and the Definition of Mean Spin -- 2.3 The Single-Particle Limit and Global Equilibrium Factorization -- 2.4 The Covariant Wigner Function -- 2.4.1 The Scalar Field -- 2.4.2 The Dirac Field -- 2.5 Fermion Polarization and the Covariant Wigner Function -- 2.6 Polarization From the Angular Momentum Operator -- 2.7 Local Thermodynamic Equilibrium -- 2.7.1 Polarization at Local Thermodynamic Equilibrium -- 2.8 Summary and Outlook -- 3 Thermodynamic Equilibrium of Massless Fermions with Vorticity, Chirality and Electromagnetic Field -- 3.1 Introduction -- 3.2 General Global Equilibrium with Electromagnetic Field -- 3.2.1 Vanishing Electromagnetic Field -- 3.3 Dirac Field in External Electromagnetic Field -- 3.3.1 Symmetries in Constant Electromagnetic Field -- 3.4 Chiral Fermions in Constant Magnetic Field -- 3.4.1 Exact Thermal Solutions -- 3.4.2 Thermodynamic Potential -- 3.4.3 Chiral Fermion Propagator in Magnetic Field -- 3.4.4 Electric Current Mean Value -- 3.4.5 Axial Current Mean Value -- 3.5 Constant Vorticity and Electromagnetic Field -- 3.5.1 Expansion on Thermal Vorticity -- 3.5.2 Currents and Chiral Anomaly -- 4 Exact Solutions in Quantum Field Theory Under Rotation -- 4.1 Introduction -- 4.2 Relativistic Kinetic Theory -- 4.2.1 Rigidly Rotating Thermal Distribution -- 4.2.2 Macroscopic Quantities.
4.3 Quantum Rigidly Rotating Thermal States -- 4.4 Mode Solutions in Cylindrical Coordinates -- 4.5 Quantum Stationary Thermal Expectation Values -- 4.5.1 Fermion Condensate -- 4.5.2 Charge Current -- 4.5.3 Stress-Energy Tensor -- 4.6 Quantum Rigidly Rotating Thermal Expectation Values -- 4.6.1 Fermion Condensate -- 4.6.2 Charge Current -- 4.6.3 Axial Current -- 4.7 Hydrodynamic Analysis of the Quantum Stress-Energy Tensor -- 4.7.1 Stress-Energy Tensor Expectation Values -- 4.7.2 Thermometer Frame -- 4.7.3 Quantum Corrections to the SET -- 4.8 Rigidly Rotating Quantum Systems in Curved Space-Time -- 4.9 Summary -- 5 Particle Polarization, Spin Tensor, and the Wigner Distribution in Relativistic Systems -- 5.1 Introduction -- 5.2 Relativistic Kinetic Theory and Its Limitations -- 5.3 The Relativistic Spin Tensor as a Polarization Sensitive Macroscopic Object -- 5.4 Particle Polarization, the Wigner Distribution, and the Polarization Flux Pseudotensor -- 5.5 Summary -- 6 Quantum Kinetic Description of Spin and Rotation -- 6.1 Introduction -- 6.2 Semi-classical Approaches -- 6.3 Wigner Function Formalism -- 6.4 Spin Polarization in Transport Theory -- 6.5 Anomaly Induced Transport Theory -- 6.6 Degenerate to Hydrodynamics -- 6.7 Experiments and Numerical Simulations -- 6.8 Summary -- 7 Global Polarization Effect and Spin-Orbit Coupling in Strong Interaction -- 7.1 Introduction -- 7.2 Orbital Angular Momenta of QGP in HIC -- 7.2.1 The Reaction Plane in HIC -- 7.2.2 The Global Orbital Angular Momentum -- 7.2.3 The Transverse Gradient of the Momentum Distribution and the Local Orbital Angular Momentum -- 7.3 Spin-Orbit Coupling in a Relativistic Quantum System -- 7.3.1 Dirac Equation and Spin-Orbit Coupling -- 7.3.2 Spin-Orbit Coupling in Systems Under Electromagnetic Interactions -- 7.3.3 Spin-Orbit Coupling in Systems Under Strong Interactions.
7.4 Theoretical Predictions on the Global Polarization Effect of QGP in HIC -- 7.4.1 Global Quark Polarization in QGP in HIC -- 7.4.2 A Kinetic Approach for Quark Polarization Rate -- 7.4.3 Global Hadron Polarization in HIC -- 7.4.4 Comparison with Experiments -- 7.5 Summary and Outlook -- 8 Vorticity and Polarization in Heavy-Ion Collisions: Hydrodynamic Models -- 8.1 Introduction: Vorticities in a Fluid -- 8.2 Polarization of Particles in the Fluid -- 8.3 Hydrodynamic Modelling of Heavy-Ion Collisions -- 8.4 Hydrodynamic Calculations at sqrtsNN=7...62 GeV -- 8.5 Hydrodynamic Calculations at sqrtsNN=200 and 2760 GeV -- 8.6 Acceleration, Grad T and Vorticity Contributions to Polarization -- 9 Vorticity and Spin Polarization in Heavy Ion Collisions: Transport Models -- 9.1 Introduction -- 9.2 Fluid Vorticity -- 9.2.1 Non-relativistic Case -- 9.2.2 Relativistic Case -- 9.3 Spin Polarization in a Vortical Fluid -- 9.4 Vorticity in Heavy Ion Collisions -- 9.4.1 Setup of Computation in Transport Models -- 9.4.2 Results for Kinematic Vorticity -- 9.4.3 Results for Thermal Vorticity -- 9.5 Λ Polarization in Heavy Ion Collisions -- 9.6 Summary -- 10 Connecting Theory to Heavy Ion Experiment -- 10.1 Introduction -- 10.2 Global Polarization Transfer to the Daughter -- 10.3 Spin Density Matrix for the Mother and Its Polarization -- 10.4 Local Polarization Transfer to the Daughter -- 10.5 Average Over the Momentum of the Mother -- 10.6 Theoretical Predictions and Sign Puzzles -- 11 QCD Phase Structure Under Rotation -- 11.1 Introduction -- 11.2 Rotating Frame -- 11.3 Nambu-Jona-Lasinio Model -- 11.4 Rotating Fermions Without Boundary -- 11.5 Boundary Conditions -- 11.6 Rotating Fermions with Background Magnetic Field -- 11.7 Inhomogeneity of Chiral Condensate: A BdG Treatment -- 11.8 Mesonic Superfluidity -- 11.9 Summary.
12 Relativistic Decomposition of the Orbital and the Spin Angular Momentum in Chiral Physics and Feynman's Angular Momentum Paradox -- 12.1 Prologue -- 12.2 Basics-Angular Momenta in an Abelian Gauge Theory -- 12.3 Dirac Fermions and Physical and Pure Gauge Potentials -- 12.4 Potential Angular Momentum and Physical Interpretation -- 12.5 Feynman's Angular Momentum Paradox and Possible Relevance to the Relativistic Nucleus-Nucleus Collision -- 12.6 Epilogue.
Record Nr. UNINA-9910495213503321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui