top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Functional Materials from Nanopolysaccharides [[electronic resource] /] / edited by Ning Lin, Juntao Tang, Alain Dufresne, Michael K.C. Tam
Advanced Functional Materials from Nanopolysaccharides [[electronic resource] /] / edited by Ning Lin, Juntao Tang, Alain Dufresne, Michael K.C. Tam
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XXV, 414 p. 133 illus., 119 illus. in color.)
Disciplina 620.115
Collana Springer Series in Biomaterials Science and Engineering
Soggetto topico Nanotechnology
Nanoscale science
Nanoscience
Nanostructures
Polymers  
Engineering—Materials
Materials science
Nanoscale Science and Technology
Polymer Sciences
Materials Engineering
Characterization and Evaluation of Materials
ISBN 981-15-0913-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword (Plan to invite Dr. Akira Isogai from University of Tokyo at Japan) -- Preface -- Preparation and properties of nanopolysaccharides family -- Functional modifications on nanopolysaccharides -- Nanopolysaccharides in tunable optical materials -- Nanopolysaccharides in energy related applications -- Nanopolysaccharides in biomedical applications -- Nanopolysaccharides in emulsion stability -- Nanopolysaccharides in environmental treatments -- Nanopolysaccharides templates in synthesis of inorganic nanoparticles and catalysis -- Nanopolysaccharides in coating -- Nanopolysaccharides in barrier composites -- Nanopolysaccharides-based green additives -- Nanopolysaccharides in high-value products -- Concluding remarks and future perspectives.
Record Nr. UNINA-9910357827103321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Controversies in Neurosurgery II / / by: Al-Mefty, Ossama
Controversies in Neurosurgery II / / by: Al-Mefty, Ossama
Autore Abolfotoh Mohamad
Edizione [0 ed.]
Pubbl/distr/stampa Thieme, 2013
Descrizione fisica 1 online resource (466 p.)
Disciplina 617.48
Soggetto topico Medicine
Nervous system diseases -- Surgery -- Case reports
Nervous system neoplasms -- Surgery -- Case reports
Neurosurgical procedures -- Methods -- Case reports
Investigative Techniques
Surgical Procedures, Operative
Diseases
Neoplasms by Site
Neoplasms
Nervous System Diseases
Nervous System Neoplasms
Methods
Neurosurgical Procedures
Surgery & Anesthesiology
Health & Biological Sciences
Surgery - General and By Type
Soggetto genere / forma Case Reports
ISBN 1-60406-233-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Controversies in Neurosurgery II""; ""Title Page""; ""Copyright""; ""Dedication""; ""Contents""; ""Preface""; ""Acknowledgments""; ""Contributors""; ""1 Surgical Removal of Tuberculum Sellae Meningiomas: Endoscopic vs. Microscopic""; ""Microsurgical Removal of Tuberculum Sellae Meningiomas""; ""Endoscopic Removal of Tuberculum Sellae Meningiomas""; ""Moderator: Surgical Removal of Tuberculum Sellae Meningiomas: Endoscopic vs. Microscopic""; ""2 Management of Parasagittal Meningiomas Involving the Superior Sagittal Sinus: Partial Removal with Radiosurgery vs. Total Removal with Repair""
""Combined Surgical and Radiosurgical Treatment of Parasagittal and Falx Meningiomas with Superior Sagittal Sinus Invasion""""Total Removal of Parasagittal Meningiomas Involving the Superior Sagittal Sinus with Sinus Repair""; ""Moderators: Management of Parasagittal Meningiomas Involving the Superior Sagittal Sinus: Partial Removal with Radiosurgery vs. Total Removal with Repair""; ""3 Management of Petroclival Meningiomas: Subtotal Resection and Radiosurgery vs. Total Removal""; ""Management of Petroclival Meningiomas: The Role of Excision and Radiosurgery""
""Total Removal of Petroclival Meningiomas""""Moderator: Management of Petroclival Meningiomas: Total Removal vs. Subtotal Resection and Radiosurgery""; ""4 Management of Incidental Meningiomas""; ""Observation of Incidental Meningiomas""; ""Stereotactic Radiosurgery for Small Meningiomas""; ""The Role of Microsurgery in the Management of Small Skull-Base Meningiomas""; ""Moderator: Management of Incidental Meningiomas""; ""5 Management of a Vestibular Schwannoma in a Single Hearing Ear of a Patient with Neurofibromatosis Type 2""
""Microsurgical Removal of Acoustic Tumors in a Single Hearing Ear of Patients with Neurofibromatosis Type 2""""Stereotactic Radiosurgery for an Acoustic Neuroma in the Only Hearing Ear""; ""Conservative Treatment of Acoustic Tumors in Patients with a Single Hearing Ear""; ""Moderator: Preserving Hearing in the Last Hearing Ear of Patients with Neurofibromatosis Type 2""; ""6 Management of Trigeminal Schwannoma: Microsurgical Removal vs. Radiosurgery""; ""Total Removal of Trigeminal Schwannomas""; ""Stereotactic Radiosurgery for Trigeminal Schwannomas""
""Moderator: Management of Trigeminal Schwannoma: Microsurgical Removal vs. Radiosurgery""""7 Surgical Removal of a Pituitary Macroadenoma: Endoscopic vs. Microscopic""; ""Is the Endoscope Useful for Pituitary Tumor Surgery?""; ""Endoscopic Removal of Pituitary Macroadenoma""; ""The Endonasal Combined Microscopic Endoscopic with Free Head Navigation Technique to Remove Pituitary Adenomas""; ""Moderator: Surgical Removal of a Pituitary Macroadenoma: Endoscopic vs. Microscopic""
""8 Surgical Approaches to Pituitary Macroadenomas with Cavernous Sinus Extensions:Transcranial vs. Transsphenoidal Approach""
Record Nr. UNINA-9910790845403321
Abolfotoh Mohamad  
Thieme, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Controversies in Neurosurgery II / / by: Al-Mefty, Ossama
Controversies in Neurosurgery II / / by: Al-Mefty, Ossama
Autore Abolfotoh Mohamad
Edizione [0 ed.]
Pubbl/distr/stampa Thieme, 2013
Descrizione fisica 1 online resource (466 p.)
Disciplina 617.48
Soggetto topico Medicine
Nervous system diseases -- Surgery -- Case reports
Nervous system neoplasms -- Surgery -- Case reports
Neurosurgical procedures -- Methods -- Case reports
Investigative Techniques
Surgical Procedures, Operative
Diseases
Neoplasms by Site
Neoplasms
Nervous System Diseases
Nervous System Neoplasms
Methods
Neurosurgical Procedures
Surgery & Anesthesiology
Health & Biological Sciences
Surgery - General and By Type
Soggetto genere / forma Case Reports
ISBN 1-60406-233-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Controversies in Neurosurgery II""; ""Title Page""; ""Copyright""; ""Dedication""; ""Contents""; ""Preface""; ""Acknowledgments""; ""Contributors""; ""1 Surgical Removal of Tuberculum Sellae Meningiomas: Endoscopic vs. Microscopic""; ""Microsurgical Removal of Tuberculum Sellae Meningiomas""; ""Endoscopic Removal of Tuberculum Sellae Meningiomas""; ""Moderator: Surgical Removal of Tuberculum Sellae Meningiomas: Endoscopic vs. Microscopic""; ""2 Management of Parasagittal Meningiomas Involving the Superior Sagittal Sinus: Partial Removal with Radiosurgery vs. Total Removal with Repair""
""Combined Surgical and Radiosurgical Treatment of Parasagittal and Falx Meningiomas with Superior Sagittal Sinus Invasion""""Total Removal of Parasagittal Meningiomas Involving the Superior Sagittal Sinus with Sinus Repair""; ""Moderators: Management of Parasagittal Meningiomas Involving the Superior Sagittal Sinus: Partial Removal with Radiosurgery vs. Total Removal with Repair""; ""3 Management of Petroclival Meningiomas: Subtotal Resection and Radiosurgery vs. Total Removal""; ""Management of Petroclival Meningiomas: The Role of Excision and Radiosurgery""
""Total Removal of Petroclival Meningiomas""""Moderator: Management of Petroclival Meningiomas: Total Removal vs. Subtotal Resection and Radiosurgery""; ""4 Management of Incidental Meningiomas""; ""Observation of Incidental Meningiomas""; ""Stereotactic Radiosurgery for Small Meningiomas""; ""The Role of Microsurgery in the Management of Small Skull-Base Meningiomas""; ""Moderator: Management of Incidental Meningiomas""; ""5 Management of a Vestibular Schwannoma in a Single Hearing Ear of a Patient with Neurofibromatosis Type 2""
""Microsurgical Removal of Acoustic Tumors in a Single Hearing Ear of Patients with Neurofibromatosis Type 2""""Stereotactic Radiosurgery for an Acoustic Neuroma in the Only Hearing Ear""; ""Conservative Treatment of Acoustic Tumors in Patients with a Single Hearing Ear""; ""Moderator: Preserving Hearing in the Last Hearing Ear of Patients with Neurofibromatosis Type 2""; ""6 Management of Trigeminal Schwannoma: Microsurgical Removal vs. Radiosurgery""; ""Total Removal of Trigeminal Schwannomas""; ""Stereotactic Radiosurgery for Trigeminal Schwannomas""
""Moderator: Management of Trigeminal Schwannoma: Microsurgical Removal vs. Radiosurgery""""7 Surgical Removal of a Pituitary Macroadenoma: Endoscopic vs. Microscopic""; ""Is the Endoscope Useful for Pituitary Tumor Surgery?""; ""Endoscopic Removal of Pituitary Macroadenoma""; ""The Endonasal Combined Microscopic Endoscopic with Free Head Navigation Technique to Remove Pituitary Adenomas""; ""Moderator: Surgical Removal of a Pituitary Macroadenoma: Endoscopic vs. Microscopic""
""8 Surgical Approaches to Pituitary Macroadenomas with Cavernous Sinus Extensions:Transcranial vs. Transsphenoidal Approach""
Record Nr. UNINA-9910815520203321
Abolfotoh Mohamad  
Thieme, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Parallel dynamic and transient simulation of large-scale power systems : a high performance computing solution / / Venkata Dinavahi, Ning Lin
Parallel dynamic and transient simulation of large-scale power systems : a high performance computing solution / / Venkata Dinavahi, Ning Lin
Autore Dinavahi Venkata
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (492 pages)
Disciplina 621.31
Soggetto topico High performance computing
ISBN 3-030-86782-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910522931203321
Dinavahi Venkata  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Real-time electromagnetic transient simulation of AC-DC networks / / Venkata Dinavahi, Ning Lin
Real-time electromagnetic transient simulation of AC-DC networks / / Venkata Dinavahi, Ning Lin
Autore Dinavahi Venkata
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2021]
Descrizione fisica 1 online resource (595 pages)
Disciplina 621.31921
Collana IEEE Press series on power and energy systems
Soggetto topico Transients (Electricity) - Simulation methods
Soggetto genere / forma Electronic books.
ISBN 1-119-69547-3
1-119-81903-2
1-119-69549-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- List of Acronyms -- Chapter 1 Field Programmable Gate Arrays -- 1.1 Overview -- 1.1.1 FPGA Hardware Architecture -- 1.1.2 Configurable Logic Block -- 1.1.3 Block RAM -- 1.1.4 Digital Signal Processing Slice -- 1.2 Multiprocessing System‐on‐Chip Architecture -- 1.3 Communication -- 1.4 HIL Emulation -- 1.4.1 Vivado® High‐Level Synthesis Tool -- 1.4.2 Vivado® Top‐Level Design -- 1.4.3 Number Representation and Operations -- 1.4.4 FPGA Design Schemes -- 1.4.4.1 Pipeline Design Architecture -- 1.4.4.2 Parallel Design Architecture -- 1.4.5 FPGA Experiment -- 1.5 Summary -- Chapter 2 Hardware Emulation Building Blocks for Power System Components -- 2.1 Overview -- 2.2 Concept of HEBB -- 2.3 Numerical Integration -- 2.4 Linear Lumped Passive Elements -- 2.4.1 Model Formulation -- 2.4.1.1 Resistance R -- 2.4.1.2 Inductance L -- 2.4.1.3 Capacitance C -- 2.4.1.4 RL Branch -- 2.4.1.5 LC Branch -- 2.4.1.6 RLCG Branch -- 2.4.2 Hardware Emulation of Linear Lumped Passive Elements -- 2.5 Sources -- 2.5.1 Hardware Emulation of Sources -- 2.6 Switches -- 2.6.1 Hardware Emulation of Switches -- 2.7 Transmission Lines -- 2.7.1 Traveling Waves -- 2.7.2 Traveling Wave Model -- 2.7.2.1 Modal Transformation -- 2.7.3 Hardware Emulation of the TWM -- 2.7.3.1 Transformation Unit -- 2.7.3.2 Update Unit -- 2.7.4 Frequency Dependent Line Model -- 2.7.5 Hardware Emulation of FDLM -- 2.7.5.1 Convolution Unit -- 2.7.5.2 Update Unit -- 2.7.6 Universal Line Model -- 2.7.6.1 Frequency‐Domain Formulation -- 2.7.6.2 Time‐Domain Formulation -- 2.7.7 Hardware Emulation of the ULM -- 2.7.7.1 Update x Unit -- 2.7.7.2 Convolution Unit -- 2.7.7.3 Interpolation Unit -- 2.8 Network Solver -- 2.8.1 Hardware Emulation of Network Solver -- 2.8.2 Paralleled EMT Solution Algorithm.
2.8.3 MainControl Module -- 2.8.4 Real‐Time Emulation Case Study -- 2.9 Nonlinear Elements: Iterative Real‐Time EMT Solver -- 2.9.1 Compensation Method -- 2.9.2 Newton-Raphson Method -- 2.9.3 Hardware Emulation of Nonlinear Solver -- 2.9.3.1 Nonlinear Function Evaluation -- 2.9.3.2 Parallel Calculation of J and F(ikm) -- 2.9.3.3 Parallel Gauss-Jordan Elimination -- 2.9.3.4 Computing vc -- 2.9.4 Case Studies -- 2.10 Summary -- Chapter 3 Power Transformers -- 3.1 Overview -- 3.2 Nonlinear Admittance‐Based Real‐Time Transformer Model -- 3.2.1 Linear Model Formulation -- 3.2.2 Linear Module Hardware Design -- 3.2.3 Inode Unit Module -- 3.2.4 Nonlinear Model Solution -- 3.2.4.1 Preisach Hysteresis Model -- 3.2.4.2 Nonlinear Module Hardware Design -- 3.2.5 Frequency‐Dependent Eddy Current Model -- 3.2.6 Hardware Emulation of Power Transformer -- 3.2.7 Real‐Time Emulation Case Studies -- 3.2.7.1 Case I -- 3.2.7.2 Case II -- 3.3 Nonlinear Magnetic Equivalent Circuit Based Real‐time Multi‐Winding Transformer Model -- 3.3.1 Topological ST EMT Model -- 3.3.1.1 ST Operating Principle -- 3.3.1.2 Tap‐selection Algorithm -- 3.3.1.3 High‐Fidelity Nonlinear MEC‐Based ST Model -- 3.3.1.4 Iron Core Hysteresis and Eddy Currents -- 3.3.2 High‐Fidelity Nonlinear MEC‐Based ST Hardware Emulation -- 3.3.2.1 Network Transient Emulation with Embedded ST -- 3.3.3 Real‐Time Emulation Case Studies -- 3.3.3.1 Finite Element Modeling and Validation -- 3.3.3.2 Case Studies -- 3.4 Real‐Time Finite‐Element Model of Power Transformer -- 3.4.1 Magnetodynamic Problem Formulation -- 3.4.1.1 Refined TLM Solution -- 3.4.1.2 Field‐Circuit Coupling -- 3.4.2 Hardware Emulation of Finite Element Model -- 3.4.3 Case Studies -- 3.4.3.1 Results and Validation -- 3.4.3.2 Speed‐up and Scalability -- 3.5 Summary -- Chapter 4 Rotating Machines -- 4.1 Overview -- 4.2 Lumped Universal Machine (UM) Model.
4.2.1 UM Model Formulation -- 4.2.2 Interfacing UM Model with Network -- 4.2.3 UM HEBB -- 4.2.3.1 Speed & -- Angle Unit -- 4.2.3.2 FrmTran Unit -- 4.2.3.3 Compidq0 Unit -- 4.2.3.4 Flux & -- Torque Unit -- 4.2.3.5 Update & -- CompVc Unit -- 4.2.4 Real‐Time Emulation Case Study -- 4.2.5 Overall Power System HEBB for Real‐Time EMT Emulation -- 4.3 General Framework for State‐Space Electrical Machine Emulation -- 4.3.1 FPGA Design Approaches for Electrical Machine Emulation -- 4.3.2 State‐Space Representation of Machine Models -- 4.3.3 System Configuration on FPGA -- 4.3.3.1 Number Representation -- 4.3.3.2 Floating‐Point Implementation by VHDL -- 4.3.3.3 Fixed‐Point Implementation by Schematic -- 4.3.4 Evaluation of Designed Architectures -- 4.3.4.1 Real‐Time Emulation Accuracy Assessment -- 4.3.4.2 Off‐line Validation -- 4.3.4.3 Hardware Resource Utilization -- 4.3.5 Real‐Time Emulation Case Studies -- 4.3.5.1 Case I: Induction Motor Transients -- 4.3.5.2 Case II: Synchronous Generator Transients -- 4.3.5.3 Case III: Line Start‐Permanent Magnet Synchronous Motor Transients -- 4.3.5.4 Case IV: DC Motor Transients -- 4.4 Nonlinear Magnetic Equivalent Circuit Based Induction Machine Model -- 4.4.1 Magnetic Circuit -- 4.4.2 Interfacing of Magnetic and Electric Circuits -- 4.4.3 Electric Circuit -- 4.4.4 Nonlinear Solution of Detailed MEC -- 4.4.5 Hardware Emulation of Nonlinear MEC -- 4.4.5.1 Parallel Gauss-Jordan Elimination Unit -- 4.4.5.2 Parallel Computational Unit for Residual Vector -- 4.4.5.3 Nonlinear Evaluation Unit -- 4.4.6 Evaluation of Real‐Time Emulation of Induction Machine -- 4.5 Summary -- Chapter 5 Protective Relays -- 5.1 Overview -- 5.2 Hardware Emulation of Multifunction Protection System -- 5.2.1 Signal Processing HEBB -- 5.2.1.1 CORDIC HEBB -- 5.2.1.2 Symmetrical Components HEBB -- 5.2.1.3 DFT HEBB.
5.2.1.4 Zero‐Crossing Detection HEBB -- 5.2.2 Multifunction Protective System HEBB -- 5.2.2.1 Fault Detection HEBB -- 5.2.2.2 Directional Overcurrent Protection HEBB -- 5.2.2.3 Over/Under Voltage Protection HEBB -- 5.2.2.4 Distance Protection HEBB -- 5.2.2.5 Under/Over Frequency Protection HEBB -- 5.3 Test Setup and Real‐Time Results -- 5.3.1 Case I -- 5.3.2 Case II -- 5.4 Summary -- Chapter 6 Adaptive Time‐Stepping Based Real‐Time EMT Emulation -- 6.1 Overview -- 6.2 Nonlinear Solution and Adaptive Time‐Stepping Schemes -- 6.2.1 Nonlinear Element Solution Methods -- 6.2.1.1 Newton-Raphson Method -- 6.2.1.2 Piecewise Linearization (PWL) Method -- 6.2.1.3 Piecewise N‐R Method -- 6.2.2 Adaptive Time‐Stepping Schemes -- 6.2.2.1 Local Truncation Error Method -- 6.2.2.2 Iteration Count Method -- 6.2.2.3 DVDT or DIDT Method -- 6.2.3 Combinations of Adaptive Time‐Stepping Schemes -- 6.2.3.1 Measurements and Restrictions for Real‐Time Emulation -- 6.2.4 Case Studies -- 6.2.4.1 Diode Full‐Bridge Circuit -- 6.2.4.2 Power Transmission System -- 6.2.4.3 FPGA Implementation -- 6.2.4.4 Real‐Time Emulation Results -- 6.3 Adaptive Time‐Stepping Universal Line Model and Universal Machine Model for Real‐Time Hardware Emulation -- 6.3.1 Subsystem‐Based Adaptive Time‐Stepping Scheme -- 6.3.2 Adaptive Time‐Stepping ULM and UM Models -- 6.3.2.1 ULM Computation -- 6.3.2.2 Universal Machine Model Computation -- 6.3.3 Real‐Time Emulation Case Study -- 6.3.3.1 Hardware Implementation -- 6.3.3.2 Latency and Hardware Resource Utilization -- 6.3.4 Results and Validation -- 6.3.4.1 Validation of the ULM Model -- 6.3.4.2 Real‐Time Emulation Results -- 6.4 Summary -- Chapter 7 Power Electronic Switches -- 7.1 Overview -- 7.2 IGBT/Diode Nonlinear Behavioral Model -- 7.2.1 Power Diode -- 7.2.1.1 Mathematical Model -- 7.2.1.2 Hardware Module Architecture -- 7.2.2 IGBT.
7.2.2.1 Model Formulation -- 7.2.2.2 Hardware Module Architecture -- 7.2.2.3 Multiple Parallel Devices -- 7.2.3 Electro‐Thermal Network -- 7.2.4 Hardware Emulation Results -- 7.3 Physics‐Based Nonlinear IGBT/Diode Model -- 7.3.1 Physics‐Based Nonlinear p-i-n Diode Model -- 7.3.1.1 Model Formulation -- 7.3.1.2 Model Discretization and Linearization -- 7.3.1.3 Hardware Emulation on FPGA -- 7.3.2 Physics‐Based Nonlinear IGBT Model -- 7.3.2.1 Model Formulation -- 7.3.2.2 Model Discretization and Linearization -- 7.3.2.3 Hardware Emulation on FPGA -- 7.3.3 Hardware Emulation Results -- 7.3.3.1 Test circuit -- 7.3.3.2 Results and comparison -- 7.4 IGBT/Diode Curve‐Fitting Model -- 7.4.1 Linear Static Curve‐fitting Model -- 7.4.1.1 Static Characteristics -- 7.4.1.2 Switching Transients -- 7.4.2 Nonlinear Dynamic Curve‐fitting Model -- 7.4.3 Hardware Emulation Results -- 7.5 Summary -- Chapter 8 AC-DC Converters -- 8.1 Overview -- 8.2 Detailed Model -- 8.2.1 Detailed Equivalent Circuit Model -- 8.3 Equivalenced Device‐Level Model -- 8.3.1 Power Loss Calculation -- 8.3.2 Thermal Network Calculation -- 8.3.3 Hardware Emulation of SM Model on FPGA -- 8.3.4 MMC System Hardware Emulation -- 8.3.5 Real‐Time Emulation Results -- 8.3.5.1 Test Circuit and Hardware Resource Utilization -- 8.3.5.2 Results and Comparison for Single‐Phase Five‐Level MMC -- 8.3.5.3 Results for Three‐Phase Nine‐Level MMC -- 8.4 Virtual‐Line‐Partitioned Device‐Level Models -- 8.4.1 TLM‐Link Partitioning -- 8.4.2 Hardware Design on FPGA -- 8.4.2.1 Hardware Platform -- 8.4.2.2 Controller Emulation -- 8.4.2.3 MMC Emulation on FPGA -- 8.4.3 Real‐Time Emulation Results -- 8.4.3.1 MMC -- 8.4.3.2 Induction Machine Driven by Five‐Level MMC -- 8.5 MMC Partitioned by Coupled Voltage-Current Sources -- 8.5.1 V-I Coupling -- 8.5.2 Hardware Emulation Case of NBM‐Based MMC.
8.5.2.1 Power Converter HIL Emulation.
Record Nr. UNINA-9910554813203321
Dinavahi Venkata  
Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Real-time electromagnetic transient simulation of AC-DC networks / / Venkata Dinavahi, Ning Lin
Real-time electromagnetic transient simulation of AC-DC networks / / Venkata Dinavahi, Ning Lin
Autore Dinavahi Venkata
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2021]
Descrizione fisica 1 online resource (595 pages)
Disciplina 621.31921
Collana IEEE Press series on power and energy systems
Soggetto topico Transients (Electricity) - Simulation methods
ISBN 1-119-69547-3
1-119-81903-2
1-119-69549-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- List of Acronyms -- Chapter 1 Field Programmable Gate Arrays -- 1.1 Overview -- 1.1.1 FPGA Hardware Architecture -- 1.1.2 Configurable Logic Block -- 1.1.3 Block RAM -- 1.1.4 Digital Signal Processing Slice -- 1.2 Multiprocessing System‐on‐Chip Architecture -- 1.3 Communication -- 1.4 HIL Emulation -- 1.4.1 Vivado® High‐Level Synthesis Tool -- 1.4.2 Vivado® Top‐Level Design -- 1.4.3 Number Representation and Operations -- 1.4.4 FPGA Design Schemes -- 1.4.4.1 Pipeline Design Architecture -- 1.4.4.2 Parallel Design Architecture -- 1.4.5 FPGA Experiment -- 1.5 Summary -- Chapter 2 Hardware Emulation Building Blocks for Power System Components -- 2.1 Overview -- 2.2 Concept of HEBB -- 2.3 Numerical Integration -- 2.4 Linear Lumped Passive Elements -- 2.4.1 Model Formulation -- 2.4.1.1 Resistance R -- 2.4.1.2 Inductance L -- 2.4.1.3 Capacitance C -- 2.4.1.4 RL Branch -- 2.4.1.5 LC Branch -- 2.4.1.6 RLCG Branch -- 2.4.2 Hardware Emulation of Linear Lumped Passive Elements -- 2.5 Sources -- 2.5.1 Hardware Emulation of Sources -- 2.6 Switches -- 2.6.1 Hardware Emulation of Switches -- 2.7 Transmission Lines -- 2.7.1 Traveling Waves -- 2.7.2 Traveling Wave Model -- 2.7.2.1 Modal Transformation -- 2.7.3 Hardware Emulation of the TWM -- 2.7.3.1 Transformation Unit -- 2.7.3.2 Update Unit -- 2.7.4 Frequency Dependent Line Model -- 2.7.5 Hardware Emulation of FDLM -- 2.7.5.1 Convolution Unit -- 2.7.5.2 Update Unit -- 2.7.6 Universal Line Model -- 2.7.6.1 Frequency‐Domain Formulation -- 2.7.6.2 Time‐Domain Formulation -- 2.7.7 Hardware Emulation of the ULM -- 2.7.7.1 Update x Unit -- 2.7.7.2 Convolution Unit -- 2.7.7.3 Interpolation Unit -- 2.8 Network Solver -- 2.8.1 Hardware Emulation of Network Solver -- 2.8.2 Paralleled EMT Solution Algorithm.
2.8.3 MainControl Module -- 2.8.4 Real‐Time Emulation Case Study -- 2.9 Nonlinear Elements: Iterative Real‐Time EMT Solver -- 2.9.1 Compensation Method -- 2.9.2 Newton-Raphson Method -- 2.9.3 Hardware Emulation of Nonlinear Solver -- 2.9.3.1 Nonlinear Function Evaluation -- 2.9.3.2 Parallel Calculation of J and F(ikm) -- 2.9.3.3 Parallel Gauss-Jordan Elimination -- 2.9.3.4 Computing vc -- 2.9.4 Case Studies -- 2.10 Summary -- Chapter 3 Power Transformers -- 3.1 Overview -- 3.2 Nonlinear Admittance‐Based Real‐Time Transformer Model -- 3.2.1 Linear Model Formulation -- 3.2.2 Linear Module Hardware Design -- 3.2.3 Inode Unit Module -- 3.2.4 Nonlinear Model Solution -- 3.2.4.1 Preisach Hysteresis Model -- 3.2.4.2 Nonlinear Module Hardware Design -- 3.2.5 Frequency‐Dependent Eddy Current Model -- 3.2.6 Hardware Emulation of Power Transformer -- 3.2.7 Real‐Time Emulation Case Studies -- 3.2.7.1 Case I -- 3.2.7.2 Case II -- 3.3 Nonlinear Magnetic Equivalent Circuit Based Real‐time Multi‐Winding Transformer Model -- 3.3.1 Topological ST EMT Model -- 3.3.1.1 ST Operating Principle -- 3.3.1.2 Tap‐selection Algorithm -- 3.3.1.3 High‐Fidelity Nonlinear MEC‐Based ST Model -- 3.3.1.4 Iron Core Hysteresis and Eddy Currents -- 3.3.2 High‐Fidelity Nonlinear MEC‐Based ST Hardware Emulation -- 3.3.2.1 Network Transient Emulation with Embedded ST -- 3.3.3 Real‐Time Emulation Case Studies -- 3.3.3.1 Finite Element Modeling and Validation -- 3.3.3.2 Case Studies -- 3.4 Real‐Time Finite‐Element Model of Power Transformer -- 3.4.1 Magnetodynamic Problem Formulation -- 3.4.1.1 Refined TLM Solution -- 3.4.1.2 Field‐Circuit Coupling -- 3.4.2 Hardware Emulation of Finite Element Model -- 3.4.3 Case Studies -- 3.4.3.1 Results and Validation -- 3.4.3.2 Speed‐up and Scalability -- 3.5 Summary -- Chapter 4 Rotating Machines -- 4.1 Overview -- 4.2 Lumped Universal Machine (UM) Model.
4.2.1 UM Model Formulation -- 4.2.2 Interfacing UM Model with Network -- 4.2.3 UM HEBB -- 4.2.3.1 Speed & -- Angle Unit -- 4.2.3.2 FrmTran Unit -- 4.2.3.3 Compidq0 Unit -- 4.2.3.4 Flux & -- Torque Unit -- 4.2.3.5 Update & -- CompVc Unit -- 4.2.4 Real‐Time Emulation Case Study -- 4.2.5 Overall Power System HEBB for Real‐Time EMT Emulation -- 4.3 General Framework for State‐Space Electrical Machine Emulation -- 4.3.1 FPGA Design Approaches for Electrical Machine Emulation -- 4.3.2 State‐Space Representation of Machine Models -- 4.3.3 System Configuration on FPGA -- 4.3.3.1 Number Representation -- 4.3.3.2 Floating‐Point Implementation by VHDL -- 4.3.3.3 Fixed‐Point Implementation by Schematic -- 4.3.4 Evaluation of Designed Architectures -- 4.3.4.1 Real‐Time Emulation Accuracy Assessment -- 4.3.4.2 Off‐line Validation -- 4.3.4.3 Hardware Resource Utilization -- 4.3.5 Real‐Time Emulation Case Studies -- 4.3.5.1 Case I: Induction Motor Transients -- 4.3.5.2 Case II: Synchronous Generator Transients -- 4.3.5.3 Case III: Line Start‐Permanent Magnet Synchronous Motor Transients -- 4.3.5.4 Case IV: DC Motor Transients -- 4.4 Nonlinear Magnetic Equivalent Circuit Based Induction Machine Model -- 4.4.1 Magnetic Circuit -- 4.4.2 Interfacing of Magnetic and Electric Circuits -- 4.4.3 Electric Circuit -- 4.4.4 Nonlinear Solution of Detailed MEC -- 4.4.5 Hardware Emulation of Nonlinear MEC -- 4.4.5.1 Parallel Gauss-Jordan Elimination Unit -- 4.4.5.2 Parallel Computational Unit for Residual Vector -- 4.4.5.3 Nonlinear Evaluation Unit -- 4.4.6 Evaluation of Real‐Time Emulation of Induction Machine -- 4.5 Summary -- Chapter 5 Protective Relays -- 5.1 Overview -- 5.2 Hardware Emulation of Multifunction Protection System -- 5.2.1 Signal Processing HEBB -- 5.2.1.1 CORDIC HEBB -- 5.2.1.2 Symmetrical Components HEBB -- 5.2.1.3 DFT HEBB.
5.2.1.4 Zero‐Crossing Detection HEBB -- 5.2.2 Multifunction Protective System HEBB -- 5.2.2.1 Fault Detection HEBB -- 5.2.2.2 Directional Overcurrent Protection HEBB -- 5.2.2.3 Over/Under Voltage Protection HEBB -- 5.2.2.4 Distance Protection HEBB -- 5.2.2.5 Under/Over Frequency Protection HEBB -- 5.3 Test Setup and Real‐Time Results -- 5.3.1 Case I -- 5.3.2 Case II -- 5.4 Summary -- Chapter 6 Adaptive Time‐Stepping Based Real‐Time EMT Emulation -- 6.1 Overview -- 6.2 Nonlinear Solution and Adaptive Time‐Stepping Schemes -- 6.2.1 Nonlinear Element Solution Methods -- 6.2.1.1 Newton-Raphson Method -- 6.2.1.2 Piecewise Linearization (PWL) Method -- 6.2.1.3 Piecewise N‐R Method -- 6.2.2 Adaptive Time‐Stepping Schemes -- 6.2.2.1 Local Truncation Error Method -- 6.2.2.2 Iteration Count Method -- 6.2.2.3 DVDT or DIDT Method -- 6.2.3 Combinations of Adaptive Time‐Stepping Schemes -- 6.2.3.1 Measurements and Restrictions for Real‐Time Emulation -- 6.2.4 Case Studies -- 6.2.4.1 Diode Full‐Bridge Circuit -- 6.2.4.2 Power Transmission System -- 6.2.4.3 FPGA Implementation -- 6.2.4.4 Real‐Time Emulation Results -- 6.3 Adaptive Time‐Stepping Universal Line Model and Universal Machine Model for Real‐Time Hardware Emulation -- 6.3.1 Subsystem‐Based Adaptive Time‐Stepping Scheme -- 6.3.2 Adaptive Time‐Stepping ULM and UM Models -- 6.3.2.1 ULM Computation -- 6.3.2.2 Universal Machine Model Computation -- 6.3.3 Real‐Time Emulation Case Study -- 6.3.3.1 Hardware Implementation -- 6.3.3.2 Latency and Hardware Resource Utilization -- 6.3.4 Results and Validation -- 6.3.4.1 Validation of the ULM Model -- 6.3.4.2 Real‐Time Emulation Results -- 6.4 Summary -- Chapter 7 Power Electronic Switches -- 7.1 Overview -- 7.2 IGBT/Diode Nonlinear Behavioral Model -- 7.2.1 Power Diode -- 7.2.1.1 Mathematical Model -- 7.2.1.2 Hardware Module Architecture -- 7.2.2 IGBT.
7.2.2.1 Model Formulation -- 7.2.2.2 Hardware Module Architecture -- 7.2.2.3 Multiple Parallel Devices -- 7.2.3 Electro‐Thermal Network -- 7.2.4 Hardware Emulation Results -- 7.3 Physics‐Based Nonlinear IGBT/Diode Model -- 7.3.1 Physics‐Based Nonlinear p-i-n Diode Model -- 7.3.1.1 Model Formulation -- 7.3.1.2 Model Discretization and Linearization -- 7.3.1.3 Hardware Emulation on FPGA -- 7.3.2 Physics‐Based Nonlinear IGBT Model -- 7.3.2.1 Model Formulation -- 7.3.2.2 Model Discretization and Linearization -- 7.3.2.3 Hardware Emulation on FPGA -- 7.3.3 Hardware Emulation Results -- 7.3.3.1 Test circuit -- 7.3.3.2 Results and comparison -- 7.4 IGBT/Diode Curve‐Fitting Model -- 7.4.1 Linear Static Curve‐fitting Model -- 7.4.1.1 Static Characteristics -- 7.4.1.2 Switching Transients -- 7.4.2 Nonlinear Dynamic Curve‐fitting Model -- 7.4.3 Hardware Emulation Results -- 7.5 Summary -- Chapter 8 AC-DC Converters -- 8.1 Overview -- 8.2 Detailed Model -- 8.2.1 Detailed Equivalent Circuit Model -- 8.3 Equivalenced Device‐Level Model -- 8.3.1 Power Loss Calculation -- 8.3.2 Thermal Network Calculation -- 8.3.3 Hardware Emulation of SM Model on FPGA -- 8.3.4 MMC System Hardware Emulation -- 8.3.5 Real‐Time Emulation Results -- 8.3.5.1 Test Circuit and Hardware Resource Utilization -- 8.3.5.2 Results and Comparison for Single‐Phase Five‐Level MMC -- 8.3.5.3 Results for Three‐Phase Nine‐Level MMC -- 8.4 Virtual‐Line‐Partitioned Device‐Level Models -- 8.4.1 TLM‐Link Partitioning -- 8.4.2 Hardware Design on FPGA -- 8.4.2.1 Hardware Platform -- 8.4.2.2 Controller Emulation -- 8.4.2.3 MMC Emulation on FPGA -- 8.4.3 Real‐Time Emulation Results -- 8.4.3.1 MMC -- 8.4.3.2 Induction Machine Driven by Five‐Level MMC -- 8.5 MMC Partitioned by Coupled Voltage-Current Sources -- 8.5.1 V-I Coupling -- 8.5.2 Hardware Emulation Case of NBM‐Based MMC.
8.5.2.1 Power Converter HIL Emulation.
Record Nr. UNINA-9910829920603321
Dinavahi Venkata  
Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui