Low-dose antibiotics : current status and outlook for the future / / topic editors: Joshua D. Nosanchuk, Jun Lin, Robert P. Hunter and Rustam I. Aminov
| Low-dose antibiotics : current status and outlook for the future / / topic editors: Joshua D. Nosanchuk, Jun Lin, Robert P. Hunter and Rustam I. Aminov |
| Autore | Robert Paul Hunter |
| Pubbl/distr/stampa | Frontiers Media SA, 2014 |
| Descrizione fisica | 1 online resource (167 pages) : illustrations; digital file(s) |
| Disciplina | 615.7922 |
| Collana |
Frontiers Research Topics
Frontiers in Microbiology Frontiers in Public Health |
| Soggetto topico |
Antibiotics - Effectiveness
Antibiotics - Research Drug resistance in microorganisms |
| Soggetto non controllato |
growth promotion
Immunomodulatory effect feed additives low dose antibiotics antibiotics Environmental impact |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910688350103321 |
Robert Paul Hunter
|
||
| Frontiers Media SA, 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mechanisms of antibiotic resistance / / edited by Jun Lin, Kunihiko Nishino, Marilyn C. Roberts, Marcelo Tolmasky,Rustam I. Aminov and Lixin Zhang
| Mechanisms of antibiotic resistance / / edited by Jun Lin, Kunihiko Nishino, Marilyn C. Roberts, Marcelo Tolmasky,Rustam I. Aminov and Lixin Zhang |
| Pubbl/distr/stampa | Switzerland : , : Frontiers Media SA, , 2015 |
| Descrizione fisica | 1 online resource (224 pages) : illustrations; digital, PDF file(s) |
| Soggetto topico |
Microbiology & Immunology
Biology Health & Biological Sciences |
| ISBN | 9782889194537 (ebook) |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910137197403321 |
| Switzerland : , : Frontiers Media SA, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Photofunctional Nanomaterials for Biomedical Applications
| Photofunctional Nanomaterials for Biomedical Applications |
| Autore | Li Chunxia |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (588 pages) |
| Disciplina | 610.284 |
| Altri autori (Persone) | LinJun |
| ISBN |
9783527845330
352784533X 9783527845347 3527845348 9783527845323 3527845321 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Acknowledgments -- Chapter 1 General Introduction and Background of Photofunctional Nanomaterials in Biomedical Applications -- 1.1 Introduction to Nanomaterials -- 1.1.1 Surface and Interfacial Effects -- 1.1.2 Small Size Effect -- 1.1.3 Quantum Size Effect -- 1.1.4 Macroscopic Quantum Tunneling Effects -- 1.2 Introduction and Classification of Photofunctional Nanomaterials -- 1.2.1 Capture of Photons -- 1.2.2 Absorption and Conversion of Photons -- 1.2.3 Physical‐chemical Processes at the Surface Interface -- 1.3 Introduction to Nanobiomedicine -- 1.3.1 Nano‐drug Delivery Systems -- 1.3.2 Nano‐imaging Technology -- 1.3.3 Nano‐diagnostic Technologies -- 1.3.4 Nanotherapeutic Technology -- 1.3.5 Nano‐biosensors -- 1.3.6 Tissue Engineering -- 1.4 Classification of Photofunctional Nanomaterials -- 1.4.1 Fluorescent Nanomaterials -- 1.4.1.1 Quantum Dots -- 1.4.1.2 Silicon‐Based Fluorescent Nanomaterials -- 1.4.1.3 Rare Earth Luminescent Nanomaterials -- 1.4.1.4 Organic Fluorescent Nanomaterials -- 1.4.2 Photothermal Nanomaterials -- 1.4.2.1 Metallic Photothermal Nanomaterials -- 1.4.2.2 Semiconductor Photothermal Nanomaterials -- 1.4.2.3 Organic Photothermal Nanomaterials -- 1.4.2.4 Carbon‐Based Photothermal Nanomaterials -- 1.4.2.5 Certain Two‐Dimensional (2D) Nanomaterials -- 1.4.2.6 Biomass Photothermal Nanomaterials -- 1.4.3 Photodynamic Nanomaterials -- 1.4.3.1 Photosensitizer‐Loaded Nanomaterials -- 1.4.3.2 Nanomaterials with Intrinsic Photodynamic Effects -- 1.4.3.3 Energy Conversion Nanomaterials for Photosensitizers -- 1.4.4 Photoelectrochemical Nanomaterials -- 1.4.4.1 Photocurrent Signal Generation Mechanism -- 1.4.4.2 Core Elements of Photoelectrochemical Biosensors -- 1.4.4.3 Types of Photoelectrochemical Biosensors -- 1.4.5 Photoacoustic Nanomaterials.
1.4.5.1 Introduction to Photoacoustic Imaging -- 1.4.5.2 Selection of Photoacoustic Contrast Agents -- 1.5 Conclusion -- References -- Chapter 2 Mechanism in Rare‐Earth‐Doped Luminescence Nanomaterials -- 2.1 Introduction -- 2.2 Composition of RE‐Doped Luminescence Nanomaterials: Substrate (Host), Activator, and Sensitizer -- 2.3 Mechanism of RE‐Doped Luminescence Nanomaterials -- 2.3.1 Luminescence: Downshifting, Upconversion, and Downconversion -- 2.3.1.1 Downshifting Luminescence -- 2.3.1.2 Upconversion Luminescence (UCL) -- 2.3.1.3 Downconversion/Quantum Cutting (QC) -- 2.3.2 Nonradiative Transition: Energy Transfer and Migration -- 2.3.2.1 Energy Transfer (ET) -- 2.3.2.2 Energy Migration (EM) -- 2.4 Luminescence Modulation -- 2.4.1 Crystal Field (CF) Regulation -- 2.4.2 Surface Defects Passivation -- 2.4.3 ET Regulation -- 2.4.3.1 Multicolor Tuning (MCT) of UCL -- 2.4.3.2 Energy Transfer-Triggered Novel Upconversion Excitation -- 2.4.4 Cross‐Relaxation (CR) Regulation -- 2.4.4.1 Alleviating Concentration Quenching (CQ) for Highly Doped UCNPs -- 2.4.4.2 NIR Downshifting Modulation by CR -- 2.4.5 Phonon‐Assisted Energy Transfer (PAET) -- 2.4.6 Dye Sensitization -- 2.4.6.1 Dye‐Sensitized Core Nanoparticles -- 2.4.6.2 Dye‐Sensitized Core-Shell Nanoparticles -- 2.4.7 Combined Excitation Regulation -- 2.4.7.1 ESA -- 2.4.7.2 STED -- 2.4.8 External Field Modulation -- 2.4.8.1 Magnetic Field Modulation -- 2.4.8.2 Electric Field Modulation -- 2.4.8.3 Plasma Resonance Enhancement -- References -- Chapter 3 Upconversion and NIR‐II Luminescence Modulation of Rare‐Earth Composites Using Material Informatics -- 3.1 Introduction -- 3.2 Typical Processes of Upconversion Luminescence -- 3.2.1 Excited State Absorption -- 3.2.2 Photon Avalanche -- 3.2.3 Energy Transfer -- 3.2.4 Cross‐Relaxation -- 3.2.5 Cooperative Upconversion -- 3.2.6 Second Harmonic Generation. 3.3 Synthesis Methods of Upconversion Nanoparticles -- 3.3.1 Thermal Decomposition Methods -- 3.3.2 Hydrothermal/Solvothermal Method -- 3.3.3 Co‐precipitation Method -- 3.3.4 Sol-Gel Method -- 3.3.5 Other Methods -- 3.4 Material Informatics in UCL -- 3.4.1 Genetic Algorithm -- 3.4.2 Particle Swarm Optimization -- 3.4.3 Simulated Annealing -- 3.4.4 Other Methods -- 3.5 Cancer Therapy Based on UCNPs -- 3.5.1 Photodynamic Therapy -- 3.5.2 Photothermal Therapy -- 3.5.3 Photo‐Immunotherapy -- 3.5.4 Photo‐Gene Therapy -- 3.6 Conclusion and Perspective -- References -- Chapter 4 Composites Based on Lanthanide‐Doped Upconversion Nanomaterials and Metal‐Organic Frameworks: Fabrication and Bioapplications -- 4.1 Introduction -- 4.2 Fabrications of Composites -- 4.2.1 In Situ Encapsulation -- 4.2.2 Partial Embedment -- 4.2.3 Interfacial Attachment -- 4.3 Bioapplications -- 4.3.1 Therapy -- 4.3.2 Bioimaging -- 4.3.3 Biosensing -- 4.4 Conclusion and Perspectives -- References -- Chapter 5 Lanthanide‐Doped Nanomaterials for Luminescence Biosensing and Biodetection -- 5.1 Introduction -- 5.2 Basics of Optical Bioprobe and Lanthanide‐Doped Nanoparticles -- 5.2.1 Design Considerations for Bioprobe Development -- 5.2.2 Characteristics of Lanthanide‐Doped Nanoparticles -- 5.2.3 NIR Biological Windows -- 5.2.4 Energy Transfer: A Key Factor in Biodetection -- 5.3 Synthesis and Functionalization of Lanthanide‐Dope Nanocrystals -- 5.3.1 Design and Synthesis of Core-Shell Structured Nanocrystals -- 5.3.1.1 Design of Upconversion Nanoparticles (UCNPs) -- 5.3.1.2 Design of Downshifting Nanoparticles (DSNPs) -- 5.3.2 Functionalization of Lanthanide‐Doped Nanoparticles (LnNPs) -- 5.3.2.1 Amphiphilic Polymer Absorption -- 5.3.2.2 Ligand Removal -- 5.3.2.3 Ligand Exchange -- 5.3.2.4 Surface Silanization -- 5.4 Applications of Luminescence Biosensing and Biodetection. 5.4.1 Temperature Sensing -- 5.4.2 pH Sensing -- 5.4.3 Detection of Biomolecules -- 5.4.4 Detection of Small Molecules and Ions -- 5.5 Integrated Devices for Point‐of‐Care Testing -- 5.6 Summary -- References -- Chapter 6 Rare Earth Luminescent Nanomaterials for Gene Delivery -- 6.1 Introduction -- 6.2 UCNPs Nanovectors -- 6.3 Surface Modification -- 6.3.1 Silica -- 6.3.2 Cationic Polymers -- 6.4 Increasing Endosomal Escape -- 6.5 Controlling Delivery Strategy -- 6.5.1 Photodegradable Polymers -- 6.5.2 Changes in Carrier Surface Charge -- 6.5.3 Photoisomerization -- 6.5.4 Microenvironments Stimulation -- 6.5.4.1 Reactive Oxygen Species (ROS) -- 6.5.4.2 Matrixmetallo Proteinases (MMPs) -- 6.5.5 Light Cage -- 6.5.6 Orthogonal Control -- 6.5.7 Release Monitoring -- 6.6 Gene Therapy and Syndication -- 6.6.1 Phototherapy -- 6.6.2 Chemotherapy -- 6.7 Other Lanthanide‐Based Nanovectors -- 6.8 Perspective -- References -- Chapter 7 Biosafety of Rare‐Earth‐Doped Nanomaterials -- 7.1 Internalization of UCNPs into Cells -- 7.2 Distribution of UCNPs -- 7.3 Excretion Behavior of UCNPs -- 7.4 The Toxic Effect of Cell Incubated with UCNPs -- 7.5 Toxic Effect of UCNPs In Vivo -- 7.6 Conclusions and Prospects -- References -- Chapter 8 Design and Construction of Photosensitizers for Photodynamic Therapy of Tumor -- 8.1 Introduction -- 8.2 Small Molecule Photosensitizers -- 8.2.1 Porphyrins -- 8.2.2 Phthalocyanines -- 8.2.3 BODIPYs -- 8.2.4 Indocyanine Dyes -- 8.2.5 AIEgens -- 8.3 Metal Complexes -- 8.3.1 Ru(II) Complexes -- 8.3.2 Ir(III) Complexes -- 8.3.3 MOFs -- 8.3.4 COFs -- 8.3.5 HOFs -- 8.4 Inorganic Photosensitizers -- 8.4.1 Carbon‐Based Photosensitizers -- 8.4.2 Silicon‐Based Photosensitizers -- 8.4.3 Simple Substance Photosensitizers -- 8.4.4 Metal Oxides‐Based Photosensitizers -- 8.4.5 Lanthanide Upconversion Nanoparticles‐Based PSs. 8.5 Conclusions and Perspectives -- References -- Chapter 9 Persistent Luminescent Materials for Optical Information Storage Applications -- 9.1 Introduction -- 9.2 Luminescent Mechanism of Persistent Luminescent Materials with Deep Traps -- 9.3 Persistent Luminescent Materials with Deep Traps -- 9.3.1 Halides or Oxyhalides -- 9.3.2 Sulfides -- 9.3.3 Oxides -- 9.3.3.1 Monobasic Cation Oxide -- 9.3.3.2 Silicate/Germanate/Stannate -- 9.3.3.3 Aluminate/Gallate -- 9.3.3.4 Titanate/Zirconate -- 9.3.3.5 Oxide Glass -- 9.3.4 Nitride or Oxynitrides -- 9.4 Outlooks -- References -- Chapter 10 The Application of Ternary Quantum Dots in Tumor‐Related Marker Detection, Imaging, and Therapy -- 10.1 Introduction -- 10.1.1 Fundamental Properties of QDs -- 10.1.2 Synthesis Methods of QDs -- 10.1.2.1 Metal‐Organic Synthesis Method -- 10.1.2.2 Hydrophilic Synthesis Method -- 10.1.2.3 Biosynthesis Method -- 10.1.3 Synthesis Methods of Ternary QDs -- 10.1.3.1 Hot‐Injection Method -- 10.1.3.2 Ion Exchange Method -- 10.1.3.3 Hydrothermal Method -- 10.1.4 Performance Control of QDs -- 10.1.4.1 Core-Shell Structure -- 10.1.4.2 Alloying -- 10.1.4.3 Ioning -- 10.1.5 Modification of QDs -- 10.1.5.1 Surfacing Ligand Molecular Exchange -- 10.1.5.2 Amphiphilic Organic Macromolecular Coating -- 10.1.6 Characterization of QDs -- 10.1.7 Biomedical Applications of QDs -- 10.1.7.1 Biological Detection -- 10.1.7.2 Cell Imaging -- 10.1.7.3 Live Imaging -- 10.1.7.4 Tumor Therapy -- 10.2 Conclusion -- References -- Chapter 11 Nanomaterials‐Induced Pyroptosis and Immunotherapy -- 11.1 Discovery and Definition of Pyroptosis -- 11.2 Mechanisms of Pyroptosis -- 11.2.1 Inflammasome and Pyroptosis -- 11.2.2 Caspases, Gasdermins, and Pyroptosis -- 11.3 Pyroptosis and Tumor Immunotherapy -- 11.3.1 Ions Interference Therapy -- 11.3.2 TME‐Responsive Pyroptosis Therapy. 11.3.3 Demethylation‐Activated Pyroptosis. |
| Record Nr. | UNINA-9910920927003321 |
Li Chunxia
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||