Gaussian measures in Hilbert space : construction and properties / / Alexander Kukush
| Gaussian measures in Hilbert space : construction and properties / / Alexander Kukush |
| Autore | Kukush Alexander |
| Pubbl/distr/stampa | London : , : ISTE Limited |
| Descrizione fisica | 1 online resource (260 pages) : illustrations |
| Disciplina | 515.42 |
| Collana | Mathematics and statistics series |
| Soggetto topico |
Measure theory
Hilbert space Gaussian measures |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-119-68666-0
1-119-68672-5 1-119-47682-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910555045303321 |
Kukush Alexander
|
||
| London : , : ISTE Limited | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Gaussian measures in Hilbert space : construction and properties / / Alexander Kukush
| Gaussian measures in Hilbert space : construction and properties / / Alexander Kukush |
| Autore | Kukush Alexander |
| Pubbl/distr/stampa | London : , : ISTE Limited |
| Descrizione fisica | 1 online resource (260 pages) : illustrations |
| Disciplina | 515.42 |
| Collana | Mathematics and statistics series |
| Soggetto topico |
Measure theory
Hilbert space Gaussian measures |
| ISBN |
1-119-68666-0
1-119-68672-5 1-119-47682-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910830691303321 |
Kukush Alexander
|
||
| London : , : ISTE Limited | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Introduction to stochastic models / / Marius Iosifescu, Nikolaos Limnios, Gheorghe Oprisan ; series editor, Nikolaos Limnios
| Introduction to stochastic models / / Marius Iosifescu, Nikolaos Limnios, Gheorghe Oprisan ; series editor, Nikolaos Limnios |
| Autore | Iosifescu Marius |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | London, : ISTE |
| Descrizione fisica | 1 online resource (385 p.) |
| Disciplina | 519.2/3 |
| Altri autori (Persone) |
LimniosN (Nikolaos)
OprisanGheorghe |
| Collana | Applied stochastic methods series |
| Soggetto topico |
Stochastic processes
Stochastic models |
| ISBN |
9781118623527
1118623525 9781118623220 1118623223 9781299315655 1299315658 9780470394076 0470394072 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Introduction to Stochastic Models; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Introduction to Stochastic Processes; 1.1. Sequences of random variables; 1.2. The notion of stochastic process; 1.3. Martingales; 1.3.1. Stopping time; 1.3.2. Discrete-time martingales; 1.3.3. Martingale convergence; 1.3.4. Square integrable martingales; 1.4. Markov chains; 1.4.1. Markov property; 1.4.2. Transition function; 1.4.3. Strong Markov property; 1.5. State classification; 1.5.1. Stationary probability; 1.6. Continuous-time Markov processes; 1.6.1. Transition function
1.6.2. Kolmogorov equations1.7. Semi-Markov processes; 1.7.1. Markov renewal processes; 1.7.2. Semi-Markov processes; Chapter 2. Simple Stochastic Models; 2.1. Urn models; 2.2. Random walks; 2.3. Brownian motion; 2.3.1. Introduction; 2.3.2. Basic properties; 2.4. Poisson processes; 2.5. Birth and death processes; Chapter 3. Elements of Markov Modeling; 3.1. Markov models: ideas, history, applications; 3.2. The discrete-time Ehrenfest model; 3.2.1. The microscopic chain; 3.2.2. The macroscopic chain; 3.2.3. Some characteristics of the Ehrenfest model 3.2.4. The discrete-time Ehrenfest model: history, generalizations, similar models3.3. Markov models in genetics; 3.3.1. Laws of heredity and mathematics; 3.3.2. Haploid models; 3.3.3. Models with two genotypes and without mutations; 3.3.4. Models with several genotypes and without mutations; 3.3.5. Models with two genotypes and mutations; 3.3.6. Models with several genotypes and mutations; 3.3.7. Models with partitioned population; 3.3.8. Genealogy models for large size populations; 3.4. Markov storage models; 3.4.1. Discrete-time models; 3.4.2. Continuous-time models 3.4.3. A generalized storage model3.5. Reliability of Markov models; 3.5.1. Introduction to reliability; 3.5.2. Some classes of survival distributions; 3.5.3. Discrete-time models; 3.5.4. Continuous-time models; Chapter 4. Renewal Models; 4.1. Fundamental concepts and examples; 4.2. Waiting times; 4.3. Modified renewal processes; 4.4. Replacement models; 4.5. Renewal reward processes; 4.6. The risk problem of an insurance company; 4.7. Counter models; 4.7.1. Type I counters; 4.7.2. Type II counters; 4.8. Alternating renewal processes; 4.9. Superposition of renewal processes 4.10. Regenerative processesChapter 5. Semi-Markov Models; 5.1. Introduction; 5.2. Markov renewal processes; 5.2.1. Definitions; 5.2.2. Markov renewal theory; 5.3. First-passage times and state classification; 5.3.1. Stationary distribution and asymptotic results; 5.4. Reliability; 5.5. Reservoir models; 5.5.1. Model I; 5.5.2. Model II; 5.6. Queues; 5.6.1. The G/M/1 queue; 5.6.2. The M/G/1 queue; 5.7. Digital communication channels; Chapter 6. Branching Models; 6.1. The Bienaymé-Galton-Watson model; 6.1.1. Historical considerations; 6.1.2. Some elementary results; 6.1.3. A fundamental example 6.1.4. Extinction probability: critical theorem |
| Record Nr. | UNINA-9910139240403321 |
Iosifescu Marius
|
||
| London, : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Queueing theory 1 : advanced trends / / edited by Vladimir Anisimov, Nikolaos Limnios
| Queueing theory 1 : advanced trends / / edited by Vladimir Anisimov, Nikolaos Limnios |
| Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE Ltd. : , : John Wiley & Sons, Incorporated, , [2020] |
| Descrizione fisica | 1 online resource (335 pages) : illustrations |
| Disciplina | 519.82 |
| Soggetto topico | Queuing theory |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-119-75542-5
1-119-75541-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Discrete Time Single-server Queues with Interdependent Interarrival and Service Times -- 1.1. Introduction -- 1.2. The Geo/Geo/1 case -- 1.2.1. Arrival probability as a function of service completion probability -- 1.2.2. Service times dependent on interarrival times -- 1.3. The PH/PH/1 case -- 1.3.1. A review of discrete PH distribution -- 1.3.2. The PH/PH/1 system -- 1.4. The model with multiple interarrival time distributions -- 1.4.1. Preliminaries -- 1.4.2. A queueing model with interarrival times dependent on service times -- 1.5. Interdependent interarrival and service times -- 1.5.1. A discrete time queueing model with bivariate geometric distribution -- 1.5.2. Matrix equivalent model -- 1.6. Conclusion -- 1.7. Acknowledgements -- 1.8. References -- 2 Busy Period, Congestion Analysis and Loss Probability in Fluid Queues -- 2.1. Introduction -- 2.2. Modeling a link under congestion and buffer fluctuations -- 2.2.1. Model description -- 2.2.2. Peaks and valleys -- 2.2.3. Minimum valley height in a busy period -- 2.2.4. Maximum peak level in a busy period -- 2.2.5. Maximum peak under a fixed fluid level -- 2.3. Fluid queue with finite buffer -- 2.3.1. Congestion metrics -- 2.3.2. Minimum valley height in a busy period -- 2.3.3. Reduction of the state space -- 2.3.4. Distributions of t1(x) and V1(x) -- 2.3.5. Sequences of idle and busy periods -- 2.3.6. Joint distributions of loss periods and loss volumes -- 2.3.7. Total duration of losses and volume of information lost -- 2.4. Conclusion -- 2.5. References -- 3 Diffusion Approximation of Queueing Systems and Networks -- 3.1. Introduction -- 3.2. Markov queueing processes -- 3.3. Average and diffusion approximation -- 3.3.1. Average scheme -- 3.3.2. Diffusion approximation scheme.
3.3.3. Stationary distribution -- 3.4. Markov queueing systems -- 3.4.1. Collective limit theorem in R1 -- 3.4.2. Systems of M/M type -- 3.4.3. Repairman problem -- 3.5. Markov queueing networks -- 3.5.1. Collective limit theorems in RN -- 3.5.2. Markov queueing networks -- 3.5.3. Superposition of Markov processes -- 3.6. Semi-Markov queueing systems -- 3.7. Acknowledgements -- 3.8. References -- 4 First-come First-served Retrial Queueing System by Laszlo Lakatos and its Modifications -- 4.1. Introduction -- 4.2. A contribution by Laszlo Lakatos and his disciples -- 4.3. A contribution by E.V. Koba -- 4.4. An Erlangian and hyper-Erlangian approximation for a Laszlo Lakatos-type queueing system -- 4.5. Two models with a combined queueing discipline -- 4.6. References -- 5 Parameter Mixing in Infinite-server Queues -- 5.1. Introduction -- 5.2. The M./Coxn/8 queue -- 5.2.1. The differential equation -- 5.2.2. Calculating moments -- 5.2.3. Steady state -- 5.2.4. M./M/8 -- 5.3. Mixing in Markov-modulated infinite-server queues -- 5.3.1. The differential equation -- 5.3.2. Calculating moments -- 5.4. Discussion and future work -- 5.5. References -- 6 Application of Fast Simulation Methods of Queueing Theory for Solving Some High-dimension Combinatorial Problems -- 6.1. Introduction -- 6.2. Upper and lower bounds for the number of some k-dimensional subspaces of a given weight over a finite field -- 6.2.1. A general fast simulation algorithm -- 6.2.2. An auxiliary algorithm -- 6.2.3. Exact analytical formulae for the cases k = 1 and k = 2 -- 6.2.4. The upper and lower bounds for the probability P{Y.(r)} -- 6.2.5. Numerical results -- 6.3. Evaluation of the number of "good" permutations by fast simulation on the SCIT-4 multiprocessor computer complex -- 6.3.1. Modified fast simulation method -- 6.3.2. Numerical results -- 6.4. References. 7 Diffusion and Gaussian Limits for Multichannel Queueing Networks -- 7.1. Introduction -- 7.2. Model description and notation -- 7.3. Local approach to prove limit theorems -- 7.3.1. Network of the [GI|M|8]r-type in heavy traffic -- 7.4. Limit theorems for networks with controlled input flow -- 7.4.1. Diffusion approximation of [SM|M|8]r-networks -- 7.4.2. Asymptotics of stationary distribution for [SM|GI|8]r-networks -- 7.4.3. Convergence to Ornstein-Uhlenbeck process -- 7.5. Gaussian approximation of networks with input flow of general structure -- 7.5.1. Gaussian approximation of [G|M|8]r-networks -- 7.5.2. Criterion of Markovian behavior for r-dimensional Gaussian processes -- 7.5.3. Non-Markov Gaussian approximation of [G|GI|8]r-networks -- 7.6. Limit processes for network with time-dependent input flow -- 7.6.1. Gaussian approximation of Mt|M|∞ r-networks in heavy traffic -- 7.6.2. Limit process in case of asymptotically large initial load -- 7.7. Conclusion -- 7.8. Acknowledgements -- 7.9. References -- 8 Recent Results in Finite-source Retrial Queues with Collisions -- 8.1. Introduction -- 8.2. Model description and notations -- 8.3. Systems with a reliable server -- 8.3.1. M/M/1 systems -- 8.3.2. M/GI/1 system -- 8.4. Systems with an unreliable server -- 8.4.1. M/M/1 system -- 8.4.2. M/GI/1 system -- 8.4.3. Stochastic simulation of special systems -- 8.4.4. Gamma distributed retrial times -- 8.4.5. The effect of breakdowns disciplines -- 8.5. Conclusion -- 8.6. Acknowledgments -- 8.7. References -- 9 Strong Stability of Queueing Systems and Networks: a Survey and Perspectives -- 9.1. Introduction -- 9.2. Preliminary and notations -- 9.3. Strong stability of queueing systems -- 9.3.1. M/M/1 queue -- 9.3.2. PH/M/1 and M/PH/1 queues -- 9.3.3. G/M/1 and M/G/1 queues -- 9.3.4. Other queues -- 9.3.5. Queueing networks. 9.3.6. Non-parametric perturbation -- 9.4. Conclusion and further directions -- 9.5. References -- 10 Time-varying Queues: a Two-time-scale Approach -- 10.1. Introduction -- 10.2. Time-varying queues -- 10.3. Main results -- 10.3.1. Large deviations of two-time-scale queues -- 10.3.2. Computation of H(y, t) -- 10.3.3. Applications to queueing systems -- 10.4. Concluding remarks -- 10.5. References -- List of Authors -- Index -- EULA. |
| Record Nr. | UNINA-9910554883003321 |
| London, England ; ; Hoboken, New Jersey : , : ISTE Ltd. : , : John Wiley & Sons, Incorporated, , [2020] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Queueing theory 1 : advanced trends / / edited by Vladimir Anisimov, Nikolaos Limnios
| Queueing theory 1 : advanced trends / / edited by Vladimir Anisimov, Nikolaos Limnios |
| Edizione | [1st edition.] |
| Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE Ltd. : , : John Wiley & Sons, Incorporated, , [2020] |
| Descrizione fisica | 1 online resource (335 pages) : illustrations |
| Disciplina | 519.82 |
| Soggetto topico | Queuing theory |
| ISBN |
1-119-75542-5
1-119-75541-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Discrete Time Single-server Queues with Interdependent Interarrival and Service Times -- 1.1. Introduction -- 1.2. The Geo/Geo/1 case -- 1.2.1. Arrival probability as a function of service completion probability -- 1.2.2. Service times dependent on interarrival times -- 1.3. The PH/PH/1 case -- 1.3.1. A review of discrete PH distribution -- 1.3.2. The PH/PH/1 system -- 1.4. The model with multiple interarrival time distributions -- 1.4.1. Preliminaries -- 1.4.2. A queueing model with interarrival times dependent on service times -- 1.5. Interdependent interarrival and service times -- 1.5.1. A discrete time queueing model with bivariate geometric distribution -- 1.5.2. Matrix equivalent model -- 1.6. Conclusion -- 1.7. Acknowledgements -- 1.8. References -- 2 Busy Period, Congestion Analysis and Loss Probability in Fluid Queues -- 2.1. Introduction -- 2.2. Modeling a link under congestion and buffer fluctuations -- 2.2.1. Model description -- 2.2.2. Peaks and valleys -- 2.2.3. Minimum valley height in a busy period -- 2.2.4. Maximum peak level in a busy period -- 2.2.5. Maximum peak under a fixed fluid level -- 2.3. Fluid queue with finite buffer -- 2.3.1. Congestion metrics -- 2.3.2. Minimum valley height in a busy period -- 2.3.3. Reduction of the state space -- 2.3.4. Distributions of t1(x) and V1(x) -- 2.3.5. Sequences of idle and busy periods -- 2.3.6. Joint distributions of loss periods and loss volumes -- 2.3.7. Total duration of losses and volume of information lost -- 2.4. Conclusion -- 2.5. References -- 3 Diffusion Approximation of Queueing Systems and Networks -- 3.1. Introduction -- 3.2. Markov queueing processes -- 3.3. Average and diffusion approximation -- 3.3.1. Average scheme -- 3.3.2. Diffusion approximation scheme.
3.3.3. Stationary distribution -- 3.4. Markov queueing systems -- 3.4.1. Collective limit theorem in R1 -- 3.4.2. Systems of M/M type -- 3.4.3. Repairman problem -- 3.5. Markov queueing networks -- 3.5.1. Collective limit theorems in RN -- 3.5.2. Markov queueing networks -- 3.5.3. Superposition of Markov processes -- 3.6. Semi-Markov queueing systems -- 3.7. Acknowledgements -- 3.8. References -- 4 First-come First-served Retrial Queueing System by Laszlo Lakatos and its Modifications -- 4.1. Introduction -- 4.2. A contribution by Laszlo Lakatos and his disciples -- 4.3. A contribution by E.V. Koba -- 4.4. An Erlangian and hyper-Erlangian approximation for a Laszlo Lakatos-type queueing system -- 4.5. Two models with a combined queueing discipline -- 4.6. References -- 5 Parameter Mixing in Infinite-server Queues -- 5.1. Introduction -- 5.2. The M./Coxn/8 queue -- 5.2.1. The differential equation -- 5.2.2. Calculating moments -- 5.2.3. Steady state -- 5.2.4. M./M/8 -- 5.3. Mixing in Markov-modulated infinite-server queues -- 5.3.1. The differential equation -- 5.3.2. Calculating moments -- 5.4. Discussion and future work -- 5.5. References -- 6 Application of Fast Simulation Methods of Queueing Theory for Solving Some High-dimension Combinatorial Problems -- 6.1. Introduction -- 6.2. Upper and lower bounds for the number of some k-dimensional subspaces of a given weight over a finite field -- 6.2.1. A general fast simulation algorithm -- 6.2.2. An auxiliary algorithm -- 6.2.3. Exact analytical formulae for the cases k = 1 and k = 2 -- 6.2.4. The upper and lower bounds for the probability P{Y.(r)} -- 6.2.5. Numerical results -- 6.3. Evaluation of the number of "good" permutations by fast simulation on the SCIT-4 multiprocessor computer complex -- 6.3.1. Modified fast simulation method -- 6.3.2. Numerical results -- 6.4. References. 7 Diffusion and Gaussian Limits for Multichannel Queueing Networks -- 7.1. Introduction -- 7.2. Model description and notation -- 7.3. Local approach to prove limit theorems -- 7.3.1. Network of the [GI|M|8]r-type in heavy traffic -- 7.4. Limit theorems for networks with controlled input flow -- 7.4.1. Diffusion approximation of [SM|M|8]r-networks -- 7.4.2. Asymptotics of stationary distribution for [SM|GI|8]r-networks -- 7.4.3. Convergence to Ornstein-Uhlenbeck process -- 7.5. Gaussian approximation of networks with input flow of general structure -- 7.5.1. Gaussian approximation of [G|M|8]r-networks -- 7.5.2. Criterion of Markovian behavior for r-dimensional Gaussian processes -- 7.5.3. Non-Markov Gaussian approximation of [G|GI|8]r-networks -- 7.6. Limit processes for network with time-dependent input flow -- 7.6.1. Gaussian approximation of Mt|M|∞ r-networks in heavy traffic -- 7.6.2. Limit process in case of asymptotically large initial load -- 7.7. Conclusion -- 7.8. Acknowledgements -- 7.9. References -- 8 Recent Results in Finite-source Retrial Queues with Collisions -- 8.1. Introduction -- 8.2. Model description and notations -- 8.3. Systems with a reliable server -- 8.3.1. M/M/1 systems -- 8.3.2. M/GI/1 system -- 8.4. Systems with an unreliable server -- 8.4.1. M/M/1 system -- 8.4.2. M/GI/1 system -- 8.4.3. Stochastic simulation of special systems -- 8.4.4. Gamma distributed retrial times -- 8.4.5. The effect of breakdowns disciplines -- 8.5. Conclusion -- 8.6. Acknowledgments -- 8.7. References -- 9 Strong Stability of Queueing Systems and Networks: a Survey and Perspectives -- 9.1. Introduction -- 9.2. Preliminary and notations -- 9.3. Strong stability of queueing systems -- 9.3.1. M/M/1 queue -- 9.3.2. PH/M/1 and M/PH/1 queues -- 9.3.3. G/M/1 and M/G/1 queues -- 9.3.4. Other queues -- 9.3.5. Queueing networks. 9.3.6. Non-parametric perturbation -- 9.4. Conclusion and further directions -- 9.5. References -- 10 Time-varying Queues: a Two-time-scale Approach -- 10.1. Introduction -- 10.2. Time-varying queues -- 10.3. Main results -- 10.3.1. Large deviations of two-time-scale queues -- 10.3.2. Computation of H(y, t) -- 10.3.3. Applications to queueing systems -- 10.4. Concluding remarks -- 10.5. References -- List of Authors -- Index -- EULA. |
| Record Nr. | UNINA-9910829939103321 |
| London, England ; ; Hoboken, New Jersey : , : ISTE Ltd. : , : John Wiley & Sons, Incorporated, , [2020] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Semi-Markov chains and hidden semi-Markov models toward applications [[electronic resource] ] : their use in reliability and DNA analysis / / Vlad Stefan Barbu and Nikolaos Limnios
| Semi-Markov chains and hidden semi-Markov models toward applications [[electronic resource] ] : their use in reliability and DNA analysis / / Vlad Stefan Barbu and Nikolaos Limnios |
| Autore | Barbu Vlad Stefan |
| Edizione | [1st ed. 2008.] |
| Pubbl/distr/stampa | New York, : Springer, 2008 |
| Descrizione fisica | 1 online resource (232 p.) |
| Disciplina | 519.233 |
| Altri autori (Persone) | LimniosN (Nikolaos) |
| Collana | Lecture notes in statistics |
| Soggetto topico |
Markov processes
Reliability (Engineering) - Mathematical models DNA - Analysis - Mathematical models |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-96006-3
9786611960063 0-387-73173-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Discrete-Time Renewal Processes -- Semi-Markov Chains -- Non parametric Estimation for Semi-Markov Chains -- Reliability Theory for Discrete-Time Semi-Markov Systems -- Hidden Semi-Markov Model and Estimation. |
| Record Nr. | UNINA-9910454634303321 |
Barbu Vlad Stefan
|
||
| New York, : Springer, 2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Semi-Markov chains and hidden semi-Markov models toward applications [[electronic resource] ] : their use in reliability and DNA analysis / / Vlad Stefan Barbu and Nikolaos Limnios
| Semi-Markov chains and hidden semi-Markov models toward applications [[electronic resource] ] : their use in reliability and DNA analysis / / Vlad Stefan Barbu and Nikolaos Limnios |
| Autore | Barbu Vlad Stefan |
| Edizione | [1st ed. 2008.] |
| Pubbl/distr/stampa | New York, : Springer, 2008 |
| Descrizione fisica | 1 online resource (232 p.) |
| Disciplina | 519.233 |
| Altri autori (Persone) | LimniosN (Nikolaos) |
| Collana | Lecture notes in statistics |
| Soggetto topico |
Markov processes
Reliability (Engineering) - Mathematical models DNA - Analysis - Mathematical models |
| ISBN |
1-281-96006-3
9786611960063 0-387-73173-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Discrete-Time Renewal Processes -- Semi-Markov Chains -- Non parametric Estimation for Semi-Markov Chains -- Reliability Theory for Discrete-Time Semi-Markov Systems -- Hidden Semi-Markov Model and Estimation. |
| Record Nr. | UNINA-9910782770903321 |
Barbu Vlad Stefan
|
||
| New York, : Springer, 2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Semi-Markov Chains and Hidden Semi-Markov Models toward Applications : Their Use in Reliability and DNA Analysis / / by Vlad Stefan Barbu, Nikolaos Limnios
| Semi-Markov Chains and Hidden Semi-Markov Models toward Applications : Their Use in Reliability and DNA Analysis / / by Vlad Stefan Barbu, Nikolaos Limnios |
| Autore | Barbu Vlad Stefan |
| Edizione | [1st ed. 2008.] |
| Pubbl/distr/stampa | New York, NY : , : Springer New York : , : Imprint : Springer, , 2008 |
| Descrizione fisica | 1 online resource (232 p.) |
| Disciplina | 519.233 |
| Altri autori (Persone) | LimniosN (Nikolaos) |
| Collana | Lecture Notes in Statistics |
| Soggetto topico |
Probabilities
Statistics Security systems Operations research Management science Bioinformatics Probability Theory Statistical Theory and Methods Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences Security Science and Technology Operations Research, Management Science |
| ISBN |
1-281-96006-3
9786611960063 0-387-73173-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Discrete-Time Renewal Processes -- Semi-Markov Chains -- Non parametric Estimation for Semi-Markov Chains -- Reliability Theory for Discrete-Time Semi-Markov Systems -- Hidden Semi-Markov Model and Estimation. |
| Record Nr. | UNINA-9910969531003321 |
Barbu Vlad Stefan
|
||
| New York, NY : , : Springer New York : , : Imprint : Springer, , 2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Statistical methods and modeling of seismogenesis / / Coordinated by Nikolaos Limnios, Eleftheria Papadimitriou, George Tsaklidis
| Statistical methods and modeling of seismogenesis / / Coordinated by Nikolaos Limnios, Eleftheria Papadimitriou, George Tsaklidis |
| Pubbl/distr/stampa | London : , : ISTE Ltd |
| Descrizione fisica | 1 online resource (333 pages) |
| Disciplina | 551.220727 |
| Soggetto topico |
Seismology - Statistical methods
Seismology - Mathematical models |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-119-82504-0
1-119-82503-2 1-119-82505-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910555248403321 |
| London : , : ISTE Ltd | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Statistical methods and modeling of seismogenesis / / Coordinated by Nikolaos Limnios, Eleftheria Papadimitriou, George Tsaklidis
| Statistical methods and modeling of seismogenesis / / Coordinated by Nikolaos Limnios, Eleftheria Papadimitriou, George Tsaklidis |
| Pubbl/distr/stampa | London : , : ISTE Ltd |
| Descrizione fisica | 1 online resource (333 pages) |
| Disciplina | 551.220727 |
| Soggetto topico |
Seismology - Statistical methods
Seismology - Mathematical models |
| ISBN |
1-119-82504-0
1-119-82503-2 1-119-82505-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910677877303321 |
| London : , : ISTE Ltd | ||
| Lo trovi qui: Univ. Federico II | ||
| ||