Qualitative spatial and temporal reasoning [[electronic resource] /] / Gérard Ligozat
| Qualitative spatial and temporal reasoning [[electronic resource] /] / Gérard Ligozat |
| Autore | Ligozat Gérard |
| Pubbl/distr/stampa | London, U.K., : ISTE |
| Descrizione fisica | 1 online resource (539 p.) |
| Disciplina | 511.3 |
| Collana | ISTE |
| Soggetto topico |
Qualitative reasoning
Spatial analysis (Statistics) Space and time - Mathematical models Logic, Symbolic and mathematical |
| ISBN |
1-118-60156-4
1-118-60145-9 1-118-60137-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Qualitative Spatial and Temporal Reasoning; Title Page; Copyright Page; Table of Contents; Introduction. Qualitative Reasoning; Chapter 1. Allen's Calculus; 1.1. Introduction; 1.1.1. ""The mystery of the dark room""; 1.1.2. Contributions of Allen's formalism; 1.2. Allen's interval relations; 1.2.1. Basic relations; 1.2.2. Disjunctive relations; 1.3. Constraint networks; 1.3.1. Definition; 1.3.2. Expressiveness; 1.3.3. Consistency; 1.4. Constraint propagation; 1.4.1. Operations: inversion and composition; 1.4.2. Composition table; 1.4.3. Allen's algebra; 1.4.4. Algebraic closure
1.4.5. Enforcing algebraic closure 1.5. Consistency tests; 1.5.1. The case of atomic networks; 1.5.2. Arbitrary networks; 1.5.3. Determining polynomial subsets; Chapter 2. Polynomial Subclasses of Allen's Algebra; 2.1. ""Show me a tractable relation!""; 2.2. Subclasses of Allen's algebra; 2.2.1. A geometrical representation of Allen's relations; 2.2.2. Interpretation in terms of granularity; 2.2.3. Convex and pre-convex relations; 2.2.4. The lattice of Allen's basic relations; 2.2.5. Tractability of convex relations; 2.2.6. Pre-convex relations; 2.2.7. Polynomiality of pre-convex relations 2.2.8. ORD-Horn relations 2.3. Maximal tractable subclasses of Allen's algebra; 2.3.1. An alternative characterization of pre-convex relations; 2.3.2. The other maximal polynomial subclasses; 2.4. Using polynomial subclasses; 2.4.1. Ladkin an Reinefeld's algorithm; 2.4.2. Empirical study of the consistency problem; 2.5. Models of Allen's language; 2.5.1. Representations of Allen's algebra; 2.5.2. Representations of the time-point algebra; 2.5.3. א0-categoricity of Allen's algebra; 2.6. Historical note; Chapter 3.neralized Intervals; 3.1. ""When they built the bridge" 3.1.1. Towards generalized intervals 3.2. Entities and relations; 3.3. The lattice of basic (p, q)-relations; 3.4. Regions associated with basic (p, q)-relations; 3.4.1. Associated polytopes; 3.4.2. M-convexity of the basic relations; 3.5. Inversion and composition; 3.5.1. Inversion; 3.5.2. Composition; 3.5.3. The algebras of generalized intervals; 3.6. Subclasses of relations: convex and pre-convex relations; 3.6.1. (p, q)-relations; 3.6.2. Convex relations; 3.6.3. Pre-convex relations; 3.7. Constraint networks; 3.8. Tractability of strongly pre-convex relations; 3.8.1. ORD-Horn relations 3.9. Conclusions 3.10. Historical note; Chapter 4. Binary Qualitative Formalisms; 4.1. ""Night driving""; 4.1.1. Parameters; 4.1.2. A panorama of the presented formalisms; 4.2. Directed points in dimension 1; 4.2.1. Operations; 4.2.2. Constraint networks; 4.2.3. Networks reducible to point networks; 4.2.4. Arbitrary directed point networks; 4.3. Directed intervals; 4.3.1. Operations; 4.3.2. Constraint networks and complexity; 4.4. The OPRA direction calculi; 4.5. Dipole calculi; 4.6. The Cardinal direction calculus; 4.6.1. Convex and pre-convex relations; 4.6.2. Complexity 4.7. The Rectangle calculus |
| Record Nr. | UNINA-9910141601003321 |
Ligozat Gérard
|
||
| London, U.K., : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Qualitative spatial and temporal reasoning / / Gérard Ligozat
| Qualitative spatial and temporal reasoning / / Gérard Ligozat |
| Autore | Ligozat Gérard |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | London, U.K., : ISTE |
| Descrizione fisica | 1 online resource (539 p.) |
| Disciplina | 511.3 |
| Collana | ISTE |
| Soggetto topico |
Qualitative reasoning
Spatial analysis (Statistics) Space and time - Mathematical models Logic, Symbolic and mathematical |
| ISBN |
9781118601563
1118601564 9781118601457 1118601459 9781118601372 1118601378 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Qualitative Spatial and Temporal Reasoning; Title Page; Copyright Page; Table of Contents; Introduction. Qualitative Reasoning; Chapter 1. Allen's Calculus; 1.1. Introduction; 1.1.1. ""The mystery of the dark room""; 1.1.2. Contributions of Allen's formalism; 1.2. Allen's interval relations; 1.2.1. Basic relations; 1.2.2. Disjunctive relations; 1.3. Constraint networks; 1.3.1. Definition; 1.3.2. Expressiveness; 1.3.3. Consistency; 1.4. Constraint propagation; 1.4.1. Operations: inversion and composition; 1.4.2. Composition table; 1.4.3. Allen's algebra; 1.4.4. Algebraic closure
1.4.5. Enforcing algebraic closure 1.5. Consistency tests; 1.5.1. The case of atomic networks; 1.5.2. Arbitrary networks; 1.5.3. Determining polynomial subsets; Chapter 2. Polynomial Subclasses of Allen's Algebra; 2.1. ""Show me a tractable relation!""; 2.2. Subclasses of Allen's algebra; 2.2.1. A geometrical representation of Allen's relations; 2.2.2. Interpretation in terms of granularity; 2.2.3. Convex and pre-convex relations; 2.2.4. The lattice of Allen's basic relations; 2.2.5. Tractability of convex relations; 2.2.6. Pre-convex relations; 2.2.7. Polynomiality of pre-convex relations 2.2.8. ORD-Horn relations 2.3. Maximal tractable subclasses of Allen's algebra; 2.3.1. An alternative characterization of pre-convex relations; 2.3.2. The other maximal polynomial subclasses; 2.4. Using polynomial subclasses; 2.4.1. Ladkin an Reinefeld's algorithm; 2.4.2. Empirical study of the consistency problem; 2.5. Models of Allen's language; 2.5.1. Representations of Allen's algebra; 2.5.2. Representations of the time-point algebra; 2.5.3. א0-categoricity of Allen's algebra; 2.6. Historical note; Chapter 3.neralized Intervals; 3.1. ""When they built the bridge" 3.1.1. Towards generalized intervals 3.2. Entities and relations; 3.3. The lattice of basic (p, q)-relations; 3.4. Regions associated with basic (p, q)-relations; 3.4.1. Associated polytopes; 3.4.2. M-convexity of the basic relations; 3.5. Inversion and composition; 3.5.1. Inversion; 3.5.2. Composition; 3.5.3. The algebras of generalized intervals; 3.6. Subclasses of relations: convex and pre-convex relations; 3.6.1. (p, q)-relations; 3.6.2. Convex relations; 3.6.3. Pre-convex relations; 3.7. Constraint networks; 3.8. Tractability of strongly pre-convex relations; 3.8.1. ORD-Horn relations 3.9. Conclusions 3.10. Historical note; Chapter 4. Binary Qualitative Formalisms; 4.1. ""Night driving""; 4.1.1. Parameters; 4.1.2. A panorama of the presented formalisms; 4.2. Directed points in dimension 1; 4.2.1. Operations; 4.2.2. Constraint networks; 4.2.3. Networks reducible to point networks; 4.2.4. Arbitrary directed point networks; 4.3. Directed intervals; 4.3.1. Operations; 4.3.2. Constraint networks and complexity; 4.4. The OPRA direction calculi; 4.5. Dipole calculi; 4.6. The Cardinal direction calculus; 4.6.1. Convex and pre-convex relations; 4.6.2. Complexity 4.7. The Rectangle calculus |
| Record Nr. | UNINA-9910814774803321 |
Ligozat Gérard
|
||
| London, U.K., : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||