top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Oblique derivative problems for elliptic equations [[electronic resource] /] / Gary M Lieberman
Oblique derivative problems for elliptic equations [[electronic resource] /] / Gary M Lieberman
Autore Lieberman Gary M. <1952->
Pubbl/distr/stampa Singapore, : World Scientific, 2013
Descrizione fisica 1 online resource (528 p.)
Disciplina 515.3533
Soggetto topico Differential equations, Elliptic
Differential equations, Partial
Soggetto genere / forma Electronic books.
ISBN 981-4452-33-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Pointwise Estimates; Introduction; 1.1 The maximum principle; 1.2 The definition of obliqueness; 1.3 The case c < 0, 0 0; 1.4 A generalized change of variables formula; 1.5 The Aleksandrov-Bakel'man-Pucci maximum principles; 1.6 The interior weak Harnack inequality; 1.7 The weak Harnack inequality at the boundary; 1.8 The strong maximum principle and uniqueness; 1.9 Holder continuity; 1.10 The local maximum principle; 1.11 Pointwise estimates for solutions of mixed boundary value problems; 1.12 Derivative bounds for solutions of elliptic equations; Exercises
2. Classical Schauder Theory from a Modern PerspectiveIntroduction; 2.1 Definitions and properties of Holder spaces; 2.2 An alternative characterization of Holder spaces; 2.3 An existence result; 2.4 Basic interior estimates; 2.5 The Perron process for the Dirichlet problem; 2.6 A model mixed boundary value problem; 2.7 Domains with curved boundary; 2.8 Fredholm-Riesz-Schauder theory; Notes; Exercises; 3. The Miller Barrier and Some Supersolutions for Oblique Derivative Problems; Introduction; 3.1 Theory of ordinary differential equations; 3.2 The Miller barrier construction
3.3 Construction of supersolutions for Dirichlet data3.4 Construction of a supersolution for oblique derivative problems; 3.5 The strong maximum principle, revisited; 3.6 A Miller barrier for mixed boundary value problems; Notes; Exercises; 4. Holder Estimates for First and Second Derivatives; Introduction; 4.1 C1, estimates for continuous; 4.2 Regularized distance; 4.3 Existence of solutions for continuous; 4.4 Holder gradient estimates for the Dirichlet problem; 4.5 C1, estimates with discontinuous in two dimensions; 4.6 C1, estimates for discontinuous in higher dimensions
4.7 C2, estimatesNotes; Exercises; 5. Weak Solutions; Introduction; 5.1 Definitions and basic properties of weak derivatives; 5.2 Sobolev imbedding theorems; 5.3 Poincare's inequality; 5.4 The weak maximum principle; 5.5 Trace theorems; 5.6 Existence of weak solutions; 5.7 Higher regularity of solutions; 5.8 Global boundedness of weak solutions; 5.9 The local maximum principle; 5.10 The DeGiorgi class; 5.11 Membership of supersolutions in the De Giorgi class; 5.12 Consequences of the local estimates; 5.13 Integral characterizations of Holder spaces; 5.14 Schauder estimates; Notes; Exercises
6. Strong SolutionsIntroduction; 6.1 Pointwise estimates for strong solutions; 6.2 A sharp trace theorem; 6.3 Results from harmonic analysis; 6.4 Some further estimates for boundary value problems in a spherical cap; 6.5 Lp estimates for solutions of constant coefficient problems in a spherical cap; 6.6 Local estimates for strong solutions of constant coefficient problems; 6.7 Local interior Lp estimates for the second derivatives of strong solutions of differential equations; 6.8 Local Lp second derivative estimates near the boundary
6.9 Existence of strong solutions for the oblique derivative problem
Record Nr. UNINA-9910462849403321
Lieberman Gary M. <1952->  
Singapore, : World Scientific, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Oblique derivative problems for elliptic equations / / Gary M. Lieberman, Iowa State University, USA
Oblique derivative problems for elliptic equations / / Gary M. Lieberman, Iowa State University, USA
Autore Lieberman Gary M. <1952->
Pubbl/distr/stampa Singapore, : World Scientific, 2013
Descrizione fisica 1 online resource (xv, 509 pages) : illustrations
Disciplina 515.3533
Collana Gale eBooks
Soggetto topico Differential equations, Elliptic
Mathematical physics
ISBN 981-4452-33-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Pointwise Estimates; Introduction; 1.1 The maximum principle; 1.2 The definition of obliqueness; 1.3 The case c < 0, 0 0; 1.4 A generalized change of variables formula; 1.5 The Aleksandrov-Bakel'man-Pucci maximum principles; 1.6 The interior weak Harnack inequality; 1.7 The weak Harnack inequality at the boundary; 1.8 The strong maximum principle and uniqueness; 1.9 Holder continuity; 1.10 The local maximum principle; 1.11 Pointwise estimates for solutions of mixed boundary value problems; 1.12 Derivative bounds for solutions of elliptic equations; Exercises
2. Classical Schauder Theory from a Modern PerspectiveIntroduction; 2.1 Definitions and properties of Holder spaces; 2.2 An alternative characterization of Holder spaces; 2.3 An existence result; 2.4 Basic interior estimates; 2.5 The Perron process for the Dirichlet problem; 2.6 A model mixed boundary value problem; 2.7 Domains with curved boundary; 2.8 Fredholm-Riesz-Schauder theory; Notes; Exercises; 3. The Miller Barrier and Some Supersolutions for Oblique Derivative Problems; Introduction; 3.1 Theory of ordinary differential equations; 3.2 The Miller barrier construction
3.3 Construction of supersolutions for Dirichlet data3.4 Construction of a supersolution for oblique derivative problems; 3.5 The strong maximum principle, revisited; 3.6 A Miller barrier for mixed boundary value problems; Notes; Exercises; 4. Holder Estimates for First and Second Derivatives; Introduction; 4.1 C1, estimates for continuous; 4.2 Regularized distance; 4.3 Existence of solutions for continuous; 4.4 Holder gradient estimates for the Dirichlet problem; 4.5 C1, estimates with discontinuous in two dimensions; 4.6 C1, estimates for discontinuous in higher dimensions
4.7 C2, estimatesNotes; Exercises; 5. Weak Solutions; Introduction; 5.1 Definitions and basic properties of weak derivatives; 5.2 Sobolev imbedding theorems; 5.3 Poincare's inequality; 5.4 The weak maximum principle; 5.5 Trace theorems; 5.6 Existence of weak solutions; 5.7 Higher regularity of solutions; 5.8 Global boundedness of weak solutions; 5.9 The local maximum principle; 5.10 The DeGiorgi class; 5.11 Membership of supersolutions in the De Giorgi class; 5.12 Consequences of the local estimates; 5.13 Integral characterizations of Holder spaces; 5.14 Schauder estimates; Notes; Exercises
6. Strong SolutionsIntroduction; 6.1 Pointwise estimates for strong solutions; 6.2 A sharp trace theorem; 6.3 Results from harmonic analysis; 6.4 Some further estimates for boundary value problems in a spherical cap; 6.5 Lp estimates for solutions of constant coefficient problems in a spherical cap; 6.6 Local estimates for strong solutions of constant coefficient problems; 6.7 Local interior Lp estimates for the second derivatives of strong solutions of differential equations; 6.8 Local Lp second derivative estimates near the boundary
6.9 Existence of strong solutions for the oblique derivative problem
Record Nr. UNINA-9910786966603321
Lieberman Gary M. <1952->  
Singapore, : World Scientific, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Oblique derivative problems for elliptic equations / / Gary M. Lieberman, Iowa State University, USA
Oblique derivative problems for elliptic equations / / Gary M. Lieberman, Iowa State University, USA
Autore Lieberman Gary M. <1952->
Pubbl/distr/stampa Singapore, : World Scientific, 2013
Descrizione fisica 1 online resource (xv, 509 pages) : illustrations
Disciplina 515.3533
Collana Gale eBooks
Soggetto topico Differential equations, Elliptic
Mathematical physics
ISBN 981-4452-33-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Pointwise Estimates; Introduction; 1.1 The maximum principle; 1.2 The definition of obliqueness; 1.3 The case c < 0, 0 0; 1.4 A generalized change of variables formula; 1.5 The Aleksandrov-Bakel'man-Pucci maximum principles; 1.6 The interior weak Harnack inequality; 1.7 The weak Harnack inequality at the boundary; 1.8 The strong maximum principle and uniqueness; 1.9 Holder continuity; 1.10 The local maximum principle; 1.11 Pointwise estimates for solutions of mixed boundary value problems; 1.12 Derivative bounds for solutions of elliptic equations; Exercises
2. Classical Schauder Theory from a Modern PerspectiveIntroduction; 2.1 Definitions and properties of Holder spaces; 2.2 An alternative characterization of Holder spaces; 2.3 An existence result; 2.4 Basic interior estimates; 2.5 The Perron process for the Dirichlet problem; 2.6 A model mixed boundary value problem; 2.7 Domains with curved boundary; 2.8 Fredholm-Riesz-Schauder theory; Notes; Exercises; 3. The Miller Barrier and Some Supersolutions for Oblique Derivative Problems; Introduction; 3.1 Theory of ordinary differential equations; 3.2 The Miller barrier construction
3.3 Construction of supersolutions for Dirichlet data3.4 Construction of a supersolution for oblique derivative problems; 3.5 The strong maximum principle, revisited; 3.6 A Miller barrier for mixed boundary value problems; Notes; Exercises; 4. Holder Estimates for First and Second Derivatives; Introduction; 4.1 C1, estimates for continuous; 4.2 Regularized distance; 4.3 Existence of solutions for continuous; 4.4 Holder gradient estimates for the Dirichlet problem; 4.5 C1, estimates with discontinuous in two dimensions; 4.6 C1, estimates for discontinuous in higher dimensions
4.7 C2, estimatesNotes; Exercises; 5. Weak Solutions; Introduction; 5.1 Definitions and basic properties of weak derivatives; 5.2 Sobolev imbedding theorems; 5.3 Poincare's inequality; 5.4 The weak maximum principle; 5.5 Trace theorems; 5.6 Existence of weak solutions; 5.7 Higher regularity of solutions; 5.8 Global boundedness of weak solutions; 5.9 The local maximum principle; 5.10 The DeGiorgi class; 5.11 Membership of supersolutions in the De Giorgi class; 5.12 Consequences of the local estimates; 5.13 Integral characterizations of Holder spaces; 5.14 Schauder estimates; Notes; Exercises
6. Strong SolutionsIntroduction; 6.1 Pointwise estimates for strong solutions; 6.2 A sharp trace theorem; 6.3 Results from harmonic analysis; 6.4 Some further estimates for boundary value problems in a spherical cap; 6.5 Lp estimates for solutions of constant coefficient problems in a spherical cap; 6.6 Local estimates for strong solutions of constant coefficient problems; 6.7 Local interior Lp estimates for the second derivatives of strong solutions of differential equations; 6.8 Local Lp second derivative estimates near the boundary
6.9 Existence of strong solutions for the oblique derivative problem
Record Nr. UNINA-9910814518403321
Lieberman Gary M. <1952->  
Singapore, : World Scientific, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui